

Would you say you’re more likely to buy a print copy of this book if it had

the Purdue bell tower on it?1

1Julian Herzog (Website), CC BY 4.0 <https://creativecommons.org/licenses/by/4.0>, via
Wikimedia Commons

1

https://creativecommons.org/licenses/by/4.0

Purdue Hackers2

presents

a journal of things done over summer 2025 (and

sometimes the fall, but we don’t talk about that timeline overrun)

SIGHORSE 2025 🦓
many authors

cover art by Cynthia, Amber, and Kart

illustrations by Amber and authors

purdue university

west lafayette, indiana

first presented on December 6, 2025

at SPILL3

thank you, sigbovik, for existing so I could copy the title page and

copyright page style off you.

2https://www.purduehackers.com/

3https://spill.purduehackers.com/

2

https://www.purduehackers.com/
https://spill.purduehackers.com/

Copyright is maintained by the individual authors. You

should ask them about using their articles; they’d likely

enjoy it.

Permission to make digital or hard copies of portions of

this work for personal use is granted; sending copies to

friends, loved ones, annoying acquintances, enemies,

and so on is encouraged.

permission to make digital or hard copies of portions of

this work for classroom use is also granted.

3

Table of Contents

Foreword ... 5

Teaching a Neural Network to Play 2048 (+ cat) 14

Acromathics ... 28

How to NOT build a game controller in 10 easy steps 55

Self-Improvement, Habits, and iPods 79

Sarlacc: A Rust crate for lock-free interning of data 94

Estrogen Is All You Need .. 117

Spread The Love ... 132

The Great Events Site Migration 150

A virtual summer art gallery in the form of a 3D cube 159

The Generativity Pattern in Rust 168

Qter: the Human Friendly Rubik's Cube Computer 208

4

Foreword

Hi! I’m Kart. I came up with SIGHORSE, made the website, and (sometimes)

reviewed submissions from authors. I was, of course, helped immeasurably

by many people without whom SIGHORSE would not be possible, but ideally

you’ve already seen their names before this article.

I’d like to talk about SIGHORSE for a bit.

There are three parts to this foreword:

1. Why the word “horse”? Why is it relevant? What does it mean to Purdue

Hackers?

2. Why work on this journal? What forces made us want to create SIGHORSE?

3. Can we see the process of making the cover? Surely it wasn’t too

much work.

1. Bringing forth a longing for horsing
into the world

Purdue Hackers: a community of students who collaborate, learn, and

build kick-ass technical projects.

— Purdue Hackers website, but I removed the emojis

5

Since forever, horses have been intertwined with the Purdue Hackers

brand.

Discord1 archaeology points to a particular person starting the conver

sation off in September 2022 with messages like:

• our mascot should be an 8-bit horse

Also the horse should be yellow

• Here’s every horse: https://every.horse/

• Here’s a horse that’s shaking: https://shakingmy.horse/

The discussion significantly escalated on the next day, when the same

person posted:

Today I forked my personal link shortener to use it for Purdue

Hackers. Introducing puhack.horse2

…

This person then served as the President of Purdue Hackers for three

years, and led its rise from a 20 person meetup to a 80-100 person

organization with sprawling projects, ideas, and coolness.

Is it any surprise that a club that emphasizes engaging in whimsy and

creating things that bring joy would latch on to “horse”?

2. Putting the Special Interest Group in
the Horse

We’ve established the importance of horses. Now, let’s explore how the

Special Interest Group part came about.

1Discord is an online group messaging platform used by Purdue Hackers. It is a
centerpiece of the community, and many important discussions happen there.

2It redirects to https://www.purduehackers.com/

6

https://every.horse/
https://shakingmy.horse/
https://www.purduehackers.com/

2.1. BURSTing from creativity
In Fall 2024, Purdue Hackers hosted a showcase for a bunch of projects

that members had created. They called it BURST3. It was glorious.

Seriously. Here’re some photos from BURST to show you just how glorious

it was. I strongly encourage you to check out the website for more

photos and information on the exhibits.

BURST included (among other things) (in clockwise order):

• a phone bell whose insides had been replaced with a Raspberry Pi;

• the Purdue Hackers logo as a meter tall sign;

• a receipt printer; and

• an indie video game about running a boba shop.

3https://burst.purduehackers.com/

7

https://burst.purduehackers.com/

It was so glorious, in fact, that it challenged my imagination to think

of it even could get more glorious. How could we ever top the projects

that we’d showcased this year? How could we inspire more members of

Hackers to make contributions to the next showcase we hosted?

How could I engage more members and spread the joy of creating and

presenting?

2.2. Commit Overflow
For the past two years, Purdue Hackers has hosted the “Commit Overflow”

event during Purdue University’s winter break.

Winter break is here; it’s the perfect time to make the things you

didn’t have time to make this semester.

During the last 10 days of the year, we’re running Commit Overflow.

The challenge: every day, commit to GitHub & post an update of what

you’re working on in #checkpoints4

If you make it all 10 days, we’ll send you stickers and a custom

laser-cut badge that will never be made or distributed again.

— The first Commit Overflow announcement in 2022

This event saw great participation from the community: people shipped

commits and maintained a sense of connection over the break. I personally

wrote a lot of documentation for keymashed5, a project I’d showcased

at BURST.

2.3. SIGBOVIK
Now to talk about something completely different: SIGBOVIK6 (Special

Interest Group in Harry Quark Bovik) is an yearly joke journal organized

4#checkpoints is a “channel” in Discord; a channel is a discrete subdivision within a
server which members send messages to. #checkpoints, in particular, is a channel where
people can showcase their in-progress creations.

5https://github.com/kartva/keymashed

6https://sigbovik.org/

8

https://github.com/kartva/keymashed
https://sigbovik.org/

primarily by grad students from Carnegie Melon University with clearly

too much time on their hands.

Their name plays on the Association for Computing Machinery’s many

conferences that start with SIG7: SIGPLAN (Special Interest Group on

Programming Languages), SIGGRAPH (Special Interest Group on Graphics),

SIGMICRO (Special Interest Group on Microarchitecture), etc.

The latest edition is just over 400 pages long. Papers published in this

illustrious journal have had titles such as “An Empirically Verified

Lower Bound for The Number Of Empty Pages Allowed In a SIGBOVIK Paper”

or “A Genius Solution: Applications of the Sprague-Grundy Theorem to

Korean Reality TV”.

Yes
“Thanks!”

No
“If you didn’t read SIGHORSE,

SIGBOVIK may be interesting.”

Yes
“More of

the same!”

No
“If you didn’t

enjoy SIGHORSE,

maybe SIGBOVIK would

be more your speed.”

Did you read

SIGHORSE?

Did you enjoy

SIGHORSE?

You should read

SIGBOVIK.

7https://www.acm.org/special-interest-groups/alphabetical-listing

9

https://www.acm.org/special-interest-groups/alphabetical-listing

3. Messily pushing the horsing out to
the world

3.1. Defining SIGHORSE
Finally, we can unify the two topics we discussed in the previous

sections: SIGHORSE was proposed as “what if we ran something like Commit

Overflow but in the summer and with a focus on whimsy and silliness?”

Our tenets would be:

• encourage people to build cool things over the summer!

• talk about said things!

• get those things to a presentable state so we could put them in the

journal!

To give an idea of the things SIGHORSE would cover, I produced the

following diagram:

10

Simply put, SIGHORSE was to be inclusive.

(Before you ask, someone did measure the size of the horses and found

it to be around 8.7× larger than the “every other scientific journal”

cloud.)

3.2. Enough about SIGHORSE, what about the cover?
I’m so glad you asked about the cover! I first learned Blender8, then

Krita9, then Inkscape10, and then finally handed it off to an artist to

finish because I sure couldn’t.

counterclockwise: first Blender draft, alternate Blender draft, Krita

draft.

You can find the final version by looking at the cover.

83D modeling software: https://www.blender.org/

9Vector/Raster painting software: https://krita.org/en/

10vector drawing software: https://inkscape.org/

11

https://www.blender.org/
https://krita.org/en/
https://inkscape.org/

4. As the show curtains descend on the
horse

SIGHORSE has been a blast. I hope you’ll enjoy reading the submissions

as much as the authors enjoyed creating them.

12

13

Teaching a Neural Network to

Play 2048 (+ cat)

Angela Qian

Certified PHcker .߆

qian220@purdue.edu

Abstract

I decided to teach a neural network to play 2048, despite

knowing very little about how to actually do that. This work

represents a comprehensive summer-long case study employing

the experimental methodology colloquially known as “fuck

around and find out,” formalized here as an iterative process of

unstructured empirical exploration punctuated by intermittent

bursts of ideas that appeared to me in my dreams. Despite

training on a barely adequate dataset and a general disregard for

best practices in machine learning, the project yielded a partially

functional model that occasionally achieves non-embarrassing

results. Future work will focus on replacing my uneducated,

half-baked ideas with something vaguely resembling standard

practice, as well as examining the effects of reading at least one

relevant paper before implementation.

14

mailto:qian220@purdue.edu

1 TL;DR: I made an AI that plays 2048

I’ve been mildly (okay, extremely)

obsessed with 2048 since I was around

ten years old. Funny tiles with big

numbers itches my brain really good.

Anyways, I’m studying computer science

in college right now, and lately I’ve

gotten interested in machine learning. So

I figured, why not combine the two?

2 Oops! I don’t know what

I’m doing

I got all hyped up about making a 2048

bot, but was quickly brought back to the

crushing reality that: I’m a stupid little

Figure 1: Author’s artistic

interpretation of this project1

as a horse. Unclear if

author has ever seen a horse.

undergrad with a smooth little brain and do not know much about machine

learning.

I started looking into some machine learning techniques, and the one that

stood out to me most was imitation learning — basically, monkey see, monkey

do. The reason? I honestly just wanted to avoid the headache of coming

up with a way to “quantify” or “rank” how good a move is. With imitation

learning, the model is given a bunch of state-action pairs (boards and their

corresponding moves), and learns to predict the next action from a given state.

3 What would I do? Let’s make the bot guess

Thanks to doing some undergrad research assistant stuff, I know that usually

training these types of models requires massive amounts of data. As in,

hundreds or even thousands of games. So of course, my first instinct is to

search online for some pre-existing datasets I can use.

1This project can be found and played at https://angelazqian.github.io/2048-AI.
Hopefully by the time you read this paper, my models will be slightly more competent
than they were when I wrote this.

15

https://angelazqian.github.io/2048-AI

Figure 2: My highscore

from last summer

I did manage to find some datasets of

2048 games online, but after digging

into the stats, it turns out those players

don’t perform nearly as well as I do. For

reference, Figure 2 shows my highscore

from last summer.

Not only did their games tend to end

much earlier than mine, looking through

their gameplay, a lot of their moves were

less than strategic. And as the saying

goes — if you want something done

right, do it yourself.

I ended up writing a small Python script

that worked as a keylogger. When run, it

opens 2048 in my browser, and for every

move I make, the script saves the board state along with the move into a JSON

file. This also allowed me to undo a move if I slipped up, so I didn’t end up

logging “bad moves” into the dataset. After collecting a staggering eight games

(ok, not a lot lol but in my defense each game lasts anywhere from half an hour

to four hours and i didn’t have much free time since i was employed full-time

over the summer), it’s time to start training!

4 Forcing my model to see The Horrors

When looking into how to do imitation learning, the first method I came

across was using Multilayer Perceptrons (MLPs).2 Essentially, it’s a type of

neural network that processes multiple inputs, and returns a single output.

This seemed like a good solution, as I could use the 16 grids of the game board

as the input, then have it return the direction to move the tile in. I train it on

the 8 games I have, load the model into the game and… yeah it sucks. Half the

moves it was making were things I would never do. Back to the drawing board.

2MLP is also the acronym for “My Little Pony,” which is rather fitting considering this is
an entry in SIGHORSE. I thought this was hilarious so I have given my model a
ponysona. See Figure 1.

16

Maybe the problem lies with my data?

When I play 2048, I tend to shove my big

tiles in the top-right corner, favoring the

upper edge, as shown in Figure 3. This

would be reflected in the dataset, since all

the collected games would follow the same

pattern.

Since the model would have only learned

to play well in the same orientation as me,

when it loses that structure, it struggles to

recover. That’s also a problem if someone

Figure 3: My preferred

orientation

wanted to try playing the game themself, then swap in the bot mid-way — their

tile alignment may be different than mine. Even natural gameplay sometimes

shifts the board’s orientation over time. I duplicated my data to represent all 8

orientations (4 × 90° rotations, then 2 × for each mirror), as shown in Figure 4,

and there is a slight improvement, but it’s still comically bad.

Figure 4: All 8 possible orientations of the board

After some thought, it occurred to me that treating each block in the grid as

an independent parameter doesn’t communicate any positional information,

which is extremely important in 2048. To address this, instead of treating

the grid as 16 independent parameters, I started treating the grid as an

image, essentially implementing a rudimentary form of computer vision. I

17

accomplished this by switching from using MLPs to using a Convolutional

Neural Network (CNN), which takes in a matrix input and uses convolutional

layers to produce a single output. Much better results! But still not nearly as

good as I had hoped.

5 Finetuning, but I am Woefully Uneducated

At this point I wanted to try finetuning my model, which means taking an

existing trained model and continuing to train it so it becomes better adapted

for the task. I looked into some common finetuning techniques, and the one

that made the most sense to me was reinforcement learning through self-play,

since 2048 is a single player game where you can objectively tell how good a

game was through the final score.

In reinforcement learning, each full playthrough of the game is called an

episode, and after each episode the model updates based on a reward function,

which is basically a formula that tells the model what counts as “good”. To

encourage the model to be constantly improving instead of settling for an

okay-ish score, I defined the reward function as the difference between the

latest episode’s score and the average score of past episodes.

And… it gets worse. What.3

I’ll put this on the back burner for now and return to this later.

6 Making my model stop being Evil

The main issue about my model at this point is that it dies a lot early game,

but if it somehow survives past a certain point, it starts performing well,

which I think is because of rotation noise. This is because early on in the

3In the writing of this journal entry, I found out that my mistake was baking a moving
baseline into the reward function, which makes reward non-stationary. What I was
previously using as the reward function was actually something called the advantage
(essentially how much better an action was than what the model usually expects).
However, that should be handled inside the learning algorithm, not included in the reward
itself. What I should have used here was a Deep Q-Network (DQN), which is designed to
estimate long-term value for actions in each game state and updates the model more
reliably.

18

game, the model seems to execute moves from various rotations, as if it can’t

decide which one to follow, leading me to remove the early gameplay from

all rotations. I also noticed that when the board gains a large tile in a corner,

it becomes ambiguous to the model as to which orientation it should follow.

Considering that one of the main rule-of-thumb’s when playing 2048 is that

you should pick a direction, label it as “evil” and avoid it at all costs, this

becomes a bit of a problem. For example, in Figure 5, if the largest tile is placed

in the top-right corner, it could follow the orientation that favors the upper

edge, designates down to be the “evil move”, and mostly play moves up, right,

and left. However, it could also follow the orientation that favors the right

edge, designates left as the “evil move”, and mostly play moves right, down,

and up. Following this logic, all 4 directions may seem like reasonable moves

to the model, which is very bad.

Figure 5: Ambiguity leads to all four directions

being possible “good moves”

When playing 2048, it is good to choose one orientation and stick with

it. However, sometimes a mistake happens, and you are forced to switch

orientations in order to recover. The most common type of orientation change

that happens mid-game is when you keep the same “evil move” and continue

to favor the same edge, but switch to the other corner on the edge to keep

the largest tiles. As an example, in Figure 6, the “evil move” continues to be

down and the favored edge continues to be up, but the corner used to store the

largest tile switches from the top right corner to being the top left.

19

Figure 6: A common way of saving a game after a blunder is to switch

orientations

To get rid of the orientation ambiguity for the model while still allowing it

the flexibility to recover from blunders, I removed half of the rotations (the

ones involving 90° and 270° rotations) from the training dataset. Just for good

measure, I also removed all instances of when I was forced to do the “evil move”

from all of the rotations. When I trained my model again on this new filtered

data, I got much better results.

7 Cat

You’re probably wondering where the cat comes in. There was “cat” in the title,

you flipped to see what it was about, and instead got the deranged ramblings

of some loser with an unhealthy obsession with 2048.

On July 18th around 10pm, my neighbor knocked on my door to tell me she

heard what sounded like kitten meowing noises coming from my car. When

I went to check, I could hear this little creature wailing from inside the car

engine. I popped open the hood of my car, hoping to scoop him out, but the

noise startled him, and he bolted into the surrounding bushes.

I regularly feed the neighborhood stray cats, and I know that all the strays in

the area have been spayed or neutered, so the kitten had likely been separated

from his mother. I couldn’t bring myself to just leave him to the elements, so

I sat on my porch with a bowl of Churu and unsalted chicken broth to try to

lure him back out. He kept crying from the bushes and would occasionally dart

20

under other cars on the street, but he still wouldn’t come near me. By 6am, I

was cold, exhausted, and realizing this approach wasn’t going to work.

The neighbor who first alerted me has experience trapping and rehabilitating

stray cats. She’s currently caring for an older cat and didn’t want to risk

exposing him to anything the kitten might carry, but she kindly lent me one

of her humane cage traps. I put the Churu-broth bowl inside, set the trap, then

went inside to rest for a bit.

When I checked a few hours later, the food was gone and I realized he was

too small to trigger the trap. To fix that, I placed a 3 lb dumbbell on the

pressure plate, refreshed the food, and waited. About an hour later — twenty-

six hours after first hearing him — I finally caught him.

Figure 7: Tiny critter caught in a

cartoonish cage trap

The next day, I brought him to a vet to make sure he was okay. They estimated

he was about 8 weeks old and weighed only 1.59 pounds — on the low side for

his age. He also had infections in both eyes and both ears, and was absolutely

covered in fleas.

We started him on medication right away, and I kept him quarantined from my

other cat while he recovered. After a few weeks of treatment, the vet gave us

21

the all-clear, and we finally introduced him to my resident cat, and thankfully,

they hit it off. Have some pictures of them together.

Figure 8: Their first

meeting!

Figure 9: My other

cat started carrying him

around the house by the

scruff

Figure 10: They play

with each other in

a game almost like

“cat and mouse.” It’s

very entertaining to

watch them chase

each other at full

speed.

Figure 11: The kitten has

been imitating my big cat,

including napping poses

Figure 12: They like to

sleep on each other all the

time, using each other as

pillows

Absolutely adorable. I love them both so much.

What was I doing before this again?

Oh. Right. 2048. Anyways, let’s get back to it!

22

8 The model got too locked in

At this point, I had managed to collect about 25 games for training — much

more than the 8 I started with, but still a tiny dataset compared to what most

machine learning models thrive on. Around then, I started to suspect that my

model was overfitting — in other words, it was getting too good at memorizing

the training data instead of actually generalizing to new games. This is not

ideal, because it means the model performs well on board states it has already

“seen” during training, but struggles or completely fails when faced with new

situations. To combat this, I added a dropout layer, which is a layer that will

randomly “turn off” some neurons so the model becomes more robust and is

less dependent on specific neurons. There’s a lot of improvement!

Figure 13: Performance of the model as epochs increase

23

However, I still felt that my model is overfitting. To monitor this, after every

epoch (one full pass through the training dataset), I have the model play 100

games and record the average score as well as the distribution of the highest

tiles reached. This way, I could track performance over time and identify when

the model was actually improving versus just memorizing moves. At the end

of training, I stored the weights from the epoch with the best average score,

essentially picking the optimal epoch rather than blindly keeping the last one.

8.1 Brief interlude for the important graph that

requires an entire subsection to explain properly

I’ve been told that the bottom graph in Figure 13 is a bit difficult to understand,

so I’ll try to break it down. Each bar shows the distribution of the highest tile

reached during games played at that epoch. The proportion of a bar that’s a

given color corresponds to the proportion of games where the corresponding

tile was the maximum. For example, at Epoch 36, around 7% of games ended

with 128 as the max tile, while approximately 30% of games reached 2048 or

higher.

Another way to read the graph is as a kind of “failure rate”: the label on each

bar tells you the percentage of games that failed to reach a certain tile. So for

Epoch 36, the model fails to reach 512 about 21% of the time, and fails to reach

4096 92% of the time.

Here’s the pseudocode for how the graph is generated, hopefully this helps if

my explanation wasn’t clear enough:

1 for each epoch:

 tile_distributions = {0, 0, 0,...}

 for each game in epoch:

 get max_tile created in game

 tile_distributions[max_tile] += 1

 for i in range(17):

 tile_value = 2^i

 show segment of length tile_distributions[tile_value],

 with color corresponding to tile_value

 show bar with these segments

2

for each epoch:

 tile_distributions = {0, 0, 0,...}

 for each game in epoch:

 get max_tile created in game

 tile_distributions[max_tile] += 1

 for i in range(17):

 tile_value = 2^i

 show segment of length tile_distributions[tile_value],

 with color corresponding to tile_value

 show bar with these segments

3

for each epoch:

 tile_distributions = {0, 0, 0,...}

 for each game in epoch:

 get max_tile created in game

 tile_distributions[max_tile] += 1

 for i in range(17):

 tile_value = 2^i

 show segment of length tile_distributions[tile_value],

 with color corresponding to tile_value

 show bar with these segments

4

for each epoch:

 tile_distributions = {0, 0, 0,...}

 for each game in epoch:

 get max_tile created in game

 tile_distributions[max_tile] += 1

 for i in range(17):

 tile_value = 2^i

 show segment of length tile_distributions[tile_value],

 with color corresponding to tile_value

 show bar with these segments

5

for each epoch:

 tile_distributions = {0, 0, 0,...}

 for each game in epoch:

 get max_tile created in game

 tile_distributions[max_tile] += 1

 for i in range(17):

 tile_value = 2^i

 show segment of length tile_distributions[tile_value],

 with color corresponding to tile_value

 show bar with these segments

6

for each epoch:

 tile_distributions = {0, 0, 0,...}

 for each game in epoch:

 get max_tile created in game

 tile_distributions[max_tile] += 1

 for i in range(17):

 tile_value = 2^i

 show segment of length tile_distributions[tile_value],

 with color corresponding to tile_value

 show bar with these segments

7

for each epoch:

 tile_distributions = {0, 0, 0,...}

 for each game in epoch:

 get max_tile created in game

 tile_distributions[max_tile] += 1

 for i in range(17):

 tile_value = 2^i

 show segment of length tile_distributions[tile_value],

 with color corresponding to tile_value

 show bar with these segments

8

for each epoch:

 tile_distributions = {0, 0, 0,...}

 for each game in epoch:

 get max_tile created in game

 tile_distributions[max_tile] += 1

 for i in range(17):

 tile_value = 2^i

 show segment of length tile_distributions[tile_value],

 with color corresponding to tile_value

 show bar with these segments

9

for each epoch:

 tile_distributions = {0, 0, 0,...}

 for each game in epoch:

 get max_tile created in game

 tile_distributions[max_tile] += 1

 for i in range(17):

 tile_value = 2^i

 show segment of length tile_distributions[tile_value],

 with color corresponding to tile_value

 show bar with these segments

10

for each epoch:

 tile_distributions = {0, 0, 0,...}

 for each game in epoch:

 get max_tile created in game

 tile_distributions[max_tile] += 1

 for i in range(17):

 tile_value = 2^i

 show segment of length tile_distributions[tile_value],

 with color corresponding to tile_value

 show bar with these segments

24

8.2 Back to the main content, where I re-attempt

finetuning

Figure 14: Performance of the model as batches increase

With the finetuning that I had attempted earlier, I noticed that the average

scores reached by the model would dip a decent amount before they improved,

then they would start worsening again. Because of this, I essentially did the

same thing, where after each batch (a small group of training samples, in this

case 25 episodes, processed before updating the model’s weights), I test it for

100 games, then track the average scores. If no improvement is seen after 40

batches, I reload from the last best model, then continue from there. If it reloads

25

too many times in a row (8), I stop and end the training. Turns out, this actually

does lead to some improvement!

Figure 15: Comparison between pure imitation and finetuned imitation

9 The end?

My model is still far from perfect, and to be honest I’m still not completely

satisfied with its performance. The finetuned version only reaches 2048 around

35% of the time, and since it was trained with imitation learning, it struggles

to recover once it makes a mistake. It also does badly if you drop it mid-game

where a human had been playing with a 90° or 270° rotation, since I excluded

those orientations from my training data. Looking ahead, I’d like to experiment

with models trained entirely through reinforcement learning without any of

my own gameplay data, and eventually implement a DQN4 into my model.

But alas, summer has come to an end, and with it, the end of my free time —

and the end of my journal entry. Those are projects for another day.

This is my first ever journal entry, and thus, I have no idea how to end this.

Bye bye, thanks for reading, etc. The end!!!

10 Acknowledgments

Thank you so much to Kartavya for helping me proofread and polish this. Also,

huge thanks to Professor Campbell for double-checking my technical details

and saving me from embarrassing myself. Lastly, thank you — you, the reader,

for putting up with me long enough to reach the end of this paper.

4I explained what a DQN is in a previous footnote. Are you not reading my footnotes?!
My feelings are hurt.

26

27

Ishan Goel 1 Roadside Gem

Acromathics

Ishan Goel

Math classes are highly structured, and they just hand you results. It’s
way more fun to explore math on your own. I want to take you on
three journeys, showing what it feels like to (re)invent math. The pre-
reqs for this doc can change based on where you are, but not much
prior knowledge is needed.

1 Roadside Gem

I’m in my AP Calculus AB class, and we’ve just learned about partial
fraction decomposition. Here’s a reminder of what that is: if you have a
function that is the ratio of two polynomials, you can write it as a sum
of simpler fractions. For example, 1

𝑥2−5𝑥+6 = 1
(𝑥−2)(𝑥−3) = 1

𝑥−2 − 1
𝑥−3 .

Anyway, I’m facing this problem:

∫ 1
𝑥2 + 1

d𝑥

… and I’m now a bit stuck, because I can’t really factor 𝑥2 + 1. Or…
perhaps I can.

𝑥2 + 1 = 𝑥2 − 𝑖2 = (𝑥 − 𝑖)(𝑥 + 𝑖)

(By now, some of you might be screaming at the page about the
integral being related to a certain trig function or whatever, but hey
shh for now). Anyway, let’s apply partial fraction decomposition:

28

Ishan Goel 1 Roadside Gem

1
𝑥2 + 1

= 𝐴
𝑥 − 𝑖

+ 𝐵
𝑥 + 𝑖

1 = 𝐴(𝑥 + 𝑖) + 𝐵(𝑥 − 𝑖)
Let 𝑥 = 𝑖 ⇒ 1 = 2𝑖𝐴

Let 𝑥 = −𝑖 ⇒ 1 = −2𝑖𝐵

∴ 𝐴 = 1
2𝑖

= − 𝑖
2

∴ 𝐵 = − 1
2𝑖

= 𝑖
2

1
𝑥2 + 1

= 𝑖
2
(1

𝑥 + 𝑖
− 1

𝑥 − 𝑖
)

Now we can evaluate the integral:

∫ 1
𝑥2 + 1

d𝑥 = 𝑖
2

∫(1
𝑥 + 𝑖

− 1
𝑥 − 𝑖

) d𝑥

= 𝑖
2
(ln| 𝑥 + 𝑖 | − ln| 𝑥 − 𝑖 |) + 𝐶

= 𝑖
2

ln|𝑥 + 𝑖
𝑥 − 𝑖

| + 𝐶

You would be right to question this. What does it mean to take the
natural log of a complex number? I have no clue. But hey, let’s just
assume this is valid and as a bit of a joke, you submit this wacky
answer as homework and move on to the other problems. (Turns out
you still get full points, but you suspect this is because your teacher
does not look too closely)

Also, let’s drop the absolute value signs. Like, at this point we’re
plugging in complex numbers, so negative numbers are the least of our
worries.

∫ 1
𝑥2 + 1

d𝑥 = 𝑖
2

ln(𝑥 + 𝑖
𝑥 − 𝑖

) + 𝐶

Later in class, I find out that the integral is actually a standard one
and that:

29

Ishan Goel 1 Roadside Gem

∫ 1
𝑥2 + 1

d𝑥 = arctan(𝑥) + 𝐶

I didn’t see this, and so now I had my own answer to the problem.
Let’s take a leap of faith and assume that my answer is valid. What
happens if we equate the two answers?

𝑖
2

ln(𝑥 + 𝑖
𝑥 − 𝑖

) + 𝐶 = arctan(𝑥)

(only one constant is needed)

Hmm, very interesting. Something involving logs and complex numbers
on one side equals something involving inverse trig on the other. Maybe
if we could find the inverse of this function, we could find a new way to
represent tan(𝑥). That would be interesting! But we need to find that
constant 𝐶 first.

(To be honest, at this point I put that expression into WolframAlpha
to find what 𝐶 is, but let’s pretend I didn’t do that and use a semi-
rigorous argument instead.)

Since the two expressions are equal, their limits to infinity must be
equal. Let’s take the limit of both sides as 𝑥 → inf:

lim
𝑥→∞

(𝑖
2

ln(𝑥 + 𝑖
𝑥 − 𝑖

) + 𝐶) = lim
𝑥→∞

arctan(𝑥)

𝐶 + 𝑖
2

lim
𝑥→∞

ln(𝑥 + 𝑖
𝑥 − 𝑖

) = 𝜋
2

Hmm, we don’t actually know what that limit on the LHS is, but let’s
make the argument that as 𝑥 → ∞, the difference in imaginary part
“matters” less and less. So:

30

Ishan Goel 1 Roadside Gem

𝐶 + 𝑖
2

lim
𝑥→∞

ln(𝑥 + 𝑖
𝑥 − 𝑖

) = 𝜋
2

𝐶 + 𝑖
2

lim
𝑥→∞

ln(𝑥
𝑥

) = 𝜋
2

𝐶 + 𝑖
2

ln(1) = 𝜋
2

𝐶 + 0 = 𝜋
2

∴ 𝐶 = 𝜋
2

Finally, we now have a solid new representation for arctan(𝑥):

arctan(𝑥) = 𝑖
2

ln(𝑥 + 𝑖
𝑥 − 𝑖

) + 𝜋
2

Isn’t that kinda cool? Yes we made some mildly shady arguments. But
they’re reasonable, and this is how discovery works. Come on, let’s just
see what happens. Let’s try and find what tan is. Let’s start by
introducing two new variables:

Define 𝑢, 𝑣 such that tan(𝑢) = 𝑣
Then, arctan(𝑣) = 𝑢
𝑖
2

ln(𝑣 + 𝑖
𝑣 − 𝑖

) + 𝜋
2

= 𝑢

If we isolate 𝑣 in the above equation, we’ll have a new representation
for tan(𝑥). Let’s try:

31

Ishan Goel 1 Roadside Gem

𝑢 = 𝑖
2

ln(𝑣 + 𝑖
𝑣 − 𝑖

) + 𝜋
2

2𝑢 = 𝑖 ln(𝑣 + 𝑖
𝑣 − 𝑖

) + 𝜋

2𝑢 − 𝜋 = 𝑖 ln(𝑣 + 𝑖
𝑣 − 𝑖

)

−𝑖(2𝑢 − 𝜋) = ln(𝑣 + 𝑖
𝑣 − 𝑖

)

(𝜋 − 2𝑢)𝑖 = ln(𝑣 + 𝑖
𝑣 − 𝑖

)

𝑒𝑖𝜋−2𝑢𝑖 = 𝑣 + 𝑖
𝑣 − 𝑖

Hold on a sec. Do you see that? If only we didn’t have that pesky 2𝑢𝑖
we may be able to find out the value of 𝑒𝑖𝜋! And that would be quite a
gem.

Well let’s try setting 𝑢 = 0 and see what happens:

𝑒𝑖𝜋−2𝑢𝑖 = 𝑣 + 𝑖
𝑣 − 𝑖

Set 𝑢 = 0 ⇒ 𝑒𝑖𝜋 = 𝑣 + 𝑖
𝑣 − 𝑖

Welp. We don’t really know what 𝑣 is. So we can’t find 𝑒𝑖𝜋. Right?
Wrong! We know what 𝑣 is since we defined 𝑢 and 𝑣 to be related by
tan. Since tan(𝑢) = 𝑣, we know that when 𝑢 = 0, 𝑣 = tan(0) = 0. So:

𝑒𝑖𝜋 = 0 + 𝑖
0 − 𝑖

𝑒𝑖𝜋 = 𝑖
−𝑖

𝑒𝑖𝜋 = −1

And there, we have found the gem. But the road goes on, and so I
strongly encourage you to carry on finding what tan is. It’s a fun
journey, and you rediscover Euler’s formula among other things along
the way.

32

Ishan Goel 2 Matrix Flow

2 Matrix Flow

This time we start in my third semester of college, in which I’m
learning at the same time about both differential equations and linear
algebra. Let me show you a cool link.

Let’s start by considering an example from 3B1B. Suppose we have
Romeo and Juliet, and two variables representing their love for each
other, 𝑟 and 𝑗. Let’s say for some reason that Romeo loves Juliet more
when she’s being aloof, but Juliet’s normal and likes Romeo more when
he’s being nice. We can represent this with a system of differential
equations:

𝑟′ = −𝑗 (Romeo’s love grows when she’s aloof)
𝑗′ = 𝑟 (Juliet’s love grows when he’s nice)

Where the ′ symbol represents the derivative with respect to time 𝑡.

Let’s first think about what we would expect the solution to this to
look like. If Romeo loves Juliet more when she’s aloof, and Juliet loves
Romeo more when he’s nice, then it seems like their love should
oscillate. When Romeo is being nice, Juliet’s love for him grows, but
then he gets bored and becomes aloof, causing her love to decrease.
This makes Romeo nice again, and the cycle continues. So we expect
some sort of oscillatory solution.

Let’s solve this system in whatever way we can. We realize that we can
get a connection between the two equations by taking the derivative of
either equation and substituting. Take the derivative of the first
equation:

𝑟″ = −𝑗′

Substituting for 𝑗′ = 𝑟 ⇒
𝑟″ = −𝑟

33

Ishan Goel 2 Matrix Flow

Aha! Now we’re looking for a function whose second derivative is its
negative. You might remember that our oscillatory friends sin and cos
have this property. Let’s try 𝑟 = sin 𝑡:

𝑟 = sin 𝑡
𝑟″ = − sin 𝑡
𝑗 = −𝑟′ = − cos 𝑡

But actually, 𝑟 = cos 𝑡 would work too. The full general solution, which
you can verify, is:

𝑟 = 𝐴 cos 𝑡 + 𝐵 sin 𝑡
𝑗 = 𝐴 sin 𝑡 − 𝐵 cos 𝑡

Where we choose 𝐴 and 𝐵 based on Romeo and Juliet’s initial
affections. You can verify 𝑟″ = −𝑟 and 𝑗 = −𝑟′.

Let’s find what 𝐴 and 𝐵 are if we are given 𝑟0 and 𝑗0, the initial
affections at time 𝑡 = 0.

𝑟0 = 𝐴 cos 0 + 𝐵 sin 0 = 𝐴
𝑗0 = 𝐴 sin 0 − 𝐵 cos 0 = −𝐵

∴ 𝐴 = 𝑟0

∴ 𝐵 = −𝑗0
∴ 𝑟 = 𝑟0 cos 𝑡 − 𝑗0 sin 𝑡

𝑗 = 𝑟0 sin 𝑡 + 𝑗0 cos 𝑡

But you know, that felt a little unsystematic. What if we had some
more complicated system?

We’ll look at the same system in a different light in a second, but let’s
first take a detour to an unrelated* problem. Say we want to solve this
really simple differential equation:

𝑥′ = 𝑥

What function is its own derivative? You might remember that 𝑥 = 𝑒𝑡
works. Now let’s consider a slightly more complicated problem:

34

Ishan Goel 2 Matrix Flow

𝑥′ = 𝑎𝑥 Eq 1

Take a second to check that this solution works:

𝑥 = 𝑒𝑎𝑡 Sol 1

Let’s now return to the original system, which I’ve copied here:

𝑟′ = −𝑗
𝑗′ = 𝑟

Because we’re trying to get a link to linear algebra, let’s try to collect 𝑟
and 𝑗 into a vector 𝑥 and try to write the system in the language of
matrices and vectors.

[𝑟′

𝑗′] = [−𝑗
𝑟]

Let 𝑥 = [𝑟
𝑗]

𝑥′ = [𝑟′

𝑗′]

∴ 𝑥′ = [−𝑗
𝑟]

Could we express that RHS in terms of 𝑥? It’s already so close.

[−𝑗
𝑟] = [0

1
−1
0][𝑟

𝑗]

∴ 𝑥′ = [0
1

−1
0]𝑥

Whoa! Take a second to appreciate what that last equation is saying. If
we imagine 𝑥 as a point in the 2D plane, this equation tells us that the
velocity vector of that point is a 90 degree rotation of the position
vector, naturally leading to a circular motion.

35

Ishan Goel 2 Matrix Flow

Already we see that this form gives us spatial intuition for the system.
But can it help us further? Sometimes, to see further, we must see less.
Let’s name that matrix 𝐴 and obscure its components. Now the system
looks like this:

𝑥′ = 𝐴𝑥

Aha! Doesn’t this look exactly like Eq 1 from before?! What if we could
solve it in the same way?

𝑥′ = 𝐴𝑥
𝑥 =?! 𝑒𝐴𝑡

Well, is that it? Did we solve it? You should be flooded with questions.
What does it mean to exponentiate 𝐴𝑡, a matrix? How can you
multiply 𝑒 by itself a matrix number of times? Obviously, this is all
nonsense… right?

Let’s create from scratch a way to exponentiate matrices.

First, do we even know what exponentiation is? Clearly, 𝑒2 is just 𝑒
multiplied by itself twice. But what is 𝑒3.14? What is 𝑒𝜋? What is 𝑒

√
2?

You’re somehow okay with these, but do you really know what they
mean? You could argue that you can define exponentiation of the reals
using successive rational approximations, but a much cleaner way is to
use the Taylor series expansion of 𝑒𝑥, which we’ll accept as fact.

𝑒𝑥 = 1 + 𝑥 + 𝑥2

2!
+ 𝑥3

3!
+ 𝑥4

4!
+ ⋯

We see that this definition involves additions and multiplications, both
of which we know how to do with matrices. So let’s just use this
definition to define matrix exponentiation. Let 𝑀 be a matrix. Then:

𝑒𝑀 = 1 + 𝑀 + 𝑀2

2!
+ 𝑀3

3!
+ 𝑀4

4!
+ ⋯

But careful! For this equation to type-check, we’ll replace 1 with the
identity matrix 𝐼 . Now we can *define* matrix exponentiation as:

36

Ishan Goel 2 Matrix Flow

𝑒𝑀 =. 𝐼 + 𝑀 + 𝑀2

2!
+ 𝑀3

3!
+ 𝑀4

4!
+ ⋯

Now we can finally evaluate 𝑒𝐴𝑡. Let’s try it out. First, let’s compute a
few powers of 𝐴.

𝐴 = [0
1

−1
0]

𝐴2 = [−1
0

0
−1]

𝐴3 = [0
−1

1
0]

𝐴4 = [1
0

0
1] = 𝐼

𝐴5 = 𝐴…

Where we can see that A is just the 90 degree rotation matrix, and so
its powers cycle every 4 applications. Now we can compute 𝑒𝐴𝑡:

𝑒𝐴𝑡 = 𝐼 + 𝐴𝑡 + (𝐴𝑡)2

2!
+ (𝐴𝑡)3

3!
+ (𝐴𝑡)4

4!
+ ⋯

= 𝐼 + 𝐴𝑡 + 𝐴2𝑡2

2!
+ 𝐴3𝑡3

3!
+ 𝐴4𝑡4

4!
+ ⋯

= [1
0

0
1] + 𝑡[0

1
−1
0] + 𝑡2

2!
[−1

0
0

−1] + 𝑡3

3!
[0
−1

1
0] + 𝑡4

4!
[1
0

0
1] + ⋯

= [
1 − 𝑡2

2! + 𝑡4

4! − ⋯
𝑡 − 𝑡3

3! + 𝑡5

5! − ⋯
−𝑡 + 𝑡3

3! − 𝑡5

5! + ⋯
1 − 𝑡2

2! + 𝑡4

4! − ⋯
]

= [cos 𝑡
sin 𝑡

− sin 𝑡
cos 𝑡]

Where we recognized the Taylor series expansions of sin and cos in the
last step.

37

Ishan Goel 2 Matrix Flow

Some of you may recognize this matrix as the rotation matrix that
rotates a point by 𝑡 radians. This makes sense, since we know the
system should produce circular motion, but it also hints at a
connection to Euler’s formula, since 𝑒𝑖𝑡 = cos 𝑡 + 𝑖 sin 𝑡 also represents a
rotation in the complex plane, and 𝑖 is a complex analog of our 90
degree rotation matrix 𝐴.

Finally, we can write down the solution to our original system:

𝑥 = 𝑒𝐴𝑡

𝑒𝐴𝑡 = [cos 𝑡
sin 𝑡

− sin 𝑡
cos 𝑡]

Oh no! We know 𝑥 is a vector, but our solution is a matrix!? Is all hope
lost? I did think so for a couple days, until I realized that the complete
solution to:

𝑥′ = 𝑎𝑥

is actually

𝑥 = 𝑥0𝑒𝑎𝑡

Where 𝑥0 is the initial condition (value of 𝑥 at 𝑡 = 0). Perhaps we can
fix our type issues by introducing a constant vector 𝑐 storing the initial
conditions:

𝑥 = 𝑒𝐴𝑡𝑐

Let 𝑐 = [𝑟0
𝑗0

]

∴ 𝑥 = [cos 𝑡
sin 𝑡

− sin 𝑡
cos 𝑡][𝑟0

𝑗0
]

= [𝑟0 cos 𝑡 − 𝑗0 sin 𝑡
𝑟0 sin 𝑡 + 𝑗0 cos 𝑡]

Finally, our solution is:

38

Ishan Goel 2 Matrix Flow

𝑟 = 𝑟0 cos 𝑡 − 𝑗0 sin 𝑡
𝑗 = 𝑟0 sin 𝑡 + 𝑗0 cos 𝑡

Which exactly matches our previous solution! Hooray! While this seems
more systematic, and it definitely has the seeds of generality, we still
had the unsystematic part of the actual matrix exponentiation, where
we relied on recognizing Taylor series. If we could just systematically
exponentiate matrices, we could solve any system of linear differential
equations!

Enter diagonalization!

Diagonalization is a method to factor a matrix into a product of three
matrices such that the middle one is a diagonal matrix (zero
everywhere except the main diagonal). The reason we care about
diagonal matrices is because many computations, including raising
them to powers, become trivial. For example, if 𝐷 is a diagonal matrix:

𝐷 =
[

𝑎

0
0

0
𝑏
0

0
0
𝑐]

Then:

𝐷𝑛 =
[

𝑎𝑛

0
0

0
𝑏𝑛

0

0
0
𝑐𝑛

]

Based on this property, we can see that the exponential of a diagonal
matrix is also easy to compute:

39

Ishan Goel 2 Matrix Flow

𝑒𝐷 = 𝐼 + 𝐷 + 𝐷2

2!
+ 𝐷3

3!
+ 𝐷4

4!
+ ⋯

=

[

1 + 𝑎 + 𝑎2

2! + 𝑎3

3! + ⋯
0
0

0
1 + 𝑏 + 𝑏2

2! + 𝑏3

3! + ⋯
0

0
0

1 + 𝑐 + 𝑐2

2! + 𝑐3

3! + ⋯]

=
[

𝑒𝑎

0
0

0
𝑒𝑏

0

0
0
𝑒𝑐

]

I like to think of diagonal matrices as having no interactions between
different dimensions (no "cross-terms"), which is why we can simply
exponentiate each dimension separately.

We would really like all our matrices to be as easy to exponentiate as
diagonal matrices, thus motivating ‘diagonalization’.

To build up to that concept, we first need intuition for eigenvalues and
eigenvectors. An eigenvector of a matrix 𝑀 is a vector that only gets
scaled when multiplied by 𝑀 . The amount it gets scaled by is called
the eigenvalue. If 𝑣 is an eigenvector of 𝑀 with eigenvalue 𝜆, then:

𝑀𝑣 = 𝜆𝑣

Why do we care about eigenvalues and eigenvectors? It’s because this
scaling property is super useful. For example, let’s take this matrix:

𝑀 =
[

 2

1
−2

0
4

−4

0
−1
4]

It has the following eigenvalues and eigenvectors:

40

Ishan Goel 2 Matrix Flow

𝜆1 = 2 𝑣1 =
[

−2

1
0]

𝜆2 = 2 𝑣2 =
[

1

0
1]

𝜆3 = 6 𝑣3 =
[

 0

1
−2]

Verify for yourself that 𝑀𝑣𝑖 = 𝜆𝑖𝑣𝑖 for 𝑖 = 1, 2, 3.

Because of this property, it’s easy to evaluate the result of a vector
being transformed by 𝑀 if we can write it as a linear combination of
the eigenvectors. Specifically, if:

𝑥 = 𝑎𝑣1 + 𝑏𝑣2 + 𝑐𝑣3

Then:

𝑀𝑥 = 𝑀(𝑎𝑣1 + 𝑏𝑣2 + 𝑐𝑣3)
= 𝑎𝑀𝑣1 + 𝑏𝑀𝑣2 + 𝑐𝑀𝑣3

= 𝑎𝜆1𝑣1 + 𝑏𝜆2𝑣2 + 𝑐𝜆3𝑣3

= 𝑎(2)𝑣1 + 𝑏(2)𝑣2 + 𝑐(6)𝑣3

This gives us a hint at how to diagonalize 𝑀 . To evaluate 𝑀𝑥 for any
vector, we first need to break 𝑥 down into its eigenvector components,
scale each component independently, and then recombine them. We can
express this process in matrix form. Let 𝑃 be the matrix whose
columns are the eigenvectors of 𝑀 :

𝑃 =
[

−2

1
0

1
0
1

0
1

−2]

Clearly, this matrix would do the recombination step (going from the
scaled eigenvector components to the transformed vector). The scaling

41

Ishan Goel 2 Matrix Flow

step is done by a diagonal matrix 𝐷 whose diagonal entries are the
eigenvalues of 𝑀 since each one happens independently. Now, we just
need to come up with the matrix that breaks 𝑥 down into its
eigenvector components. This matrix is simply the inverse of 𝑃 ,
denoted 𝑃−1. The intuition is that 𝑃 takes in eigenvector components
and outputs the vector, so 𝑃−1 must take in the vector and output the
eigenvector components.

𝐷 =
[

2

0
0

0
2
0

0
0
6]

Putting it all together, we have:

𝑀𝑥 = 𝑃𝐷𝑃−1𝑥
∴ 𝑀 = 𝑃𝐷𝑃−1

In this case:

𝑃 =
[

−2

1
0

1
0
1

0
1

−2]

𝐷 =
[

2

0
0

0
2
0

0
0
6]

𝑃−1 = 1
4
[

−1

2
1

2
4
2

1
2

−1]

𝑀 = 𝑃𝐷𝑃−1 =
[

 2

1
−2

0
4

−4

0
−1
4]

This is a beautiful result. But is it useful? Well, let’s see what happens
when we try to exponentiate 𝑀 if it has this factorization:

42

Ishan Goel 2 Matrix Flow

𝑒𝑀 = 𝑒𝑃𝐷𝑃−1

= 𝐼 + 𝑃𝐷𝑃−1 +
(𝑃𝐷𝑃−1)2

2!
+

(𝑃𝐷𝑃−1)3

3!
+

(𝑃𝐷𝑃−1)4

4!
+ ⋯

= 𝐼 + 𝑃𝐷𝑃−1 + 𝑃𝐷2𝑃−1

2!
+ 𝑃𝐷3𝑃−1

3!
+ 𝑃𝐷4𝑃−1

4!
+ ⋯

= 𝑃(𝐼 + 𝐷 + 𝐷2

2!
+ 𝐷3

3!
+ 𝐷4

4!
+ ⋯)𝑃−1

= 𝑃𝑒𝐷𝑃−1

On the second step we used this result:

(𝑃𝐷𝑃−1)𝑛 = 𝑃𝐷𝑃−1𝑃𝐷𝑃−1⋯𝑃𝐷𝑃−1 = 𝑃𝐷𝐷⋯𝐷𝑃−1 = 𝑃𝐷𝑛𝑃−1

Awesome. If we can diagonalize 𝑀 , all we have to do is replace the
diagonal matrix 𝐷 with its exponential, which is easy to compute.

It might seem that this operation only works for some matrices, but in
fact, there’s a sense in which a random matrix can almost always be
diagonalized. Let’s try diagonalizing 𝐴 from earlier, and check if we
again get the same result for 𝑒𝐴𝑡.

𝐴 = [0
1

−1
0]

Eigenvalues: 𝜆1 = 𝑖 𝜆2 = −𝑖

Eigenvectors: 𝑣1 = [𝑖
1] 𝑣2 = [−𝑖

1]

𝑃 = [𝑖
1

−𝑖
1]

𝐷 = [𝑖
0

0
−𝑖]

𝑃−1 = 1
2
[−𝑖

𝑖
1
1]

43

Ishan Goel 2 Matrix Flow

Verify this factorization on WolframAlpha.1

Now we can compute 𝑒𝐴𝑡:

𝑒𝐴𝑡 = 𝑃𝑒𝐷𝑡𝑃−1

= [𝑖
1

−𝑖
1][𝑒𝑖𝑡

0
0

𝑒−𝑖𝑡]
1
2
[−𝑖

𝑖
1
1]

= 1
2
[𝑖
1

−𝑖
1][−𝑖𝑒𝑖𝑡

𝑖𝑒−𝑖𝑡
𝑒𝑖𝑡

𝑒−𝑖𝑡]

= 1
2
[𝑒𝑖𝑡 + 𝑒−𝑖𝑡

−𝑖(𝑒𝑖𝑡 − 𝑒−𝑖𝑡)
𝑖(𝑒𝑖𝑡 − 𝑒−𝑖𝑡)
𝑒𝑖𝑡 + 𝑒−𝑖𝑡]

= 1
2
[

𝑒𝑖𝑡 + 𝑒−𝑖𝑡

1
𝑖 (𝑒𝑖𝑡 − 𝑒−𝑖𝑡)

−1
𝑖 (𝑒𝑖𝑡 − 𝑒−𝑖𝑡)
𝑒𝑖𝑡 + 𝑒−𝑖𝑡]

= [cos 𝑡
sin 𝑡

− sin 𝑡
cos 𝑡]

Verify this on WolframAlpha.2

As expected, this gives us the 2D rotation matrix again! Now, let’s
recap our method for solving systems of linear differential equations
powered by exponentiating matrices.

1. Write the system in matrix form 𝑥′ = 𝐴𝑥

2. Diagonalize 𝐴 into 𝐴 = 𝑃𝐷𝑃−1

3. Compute 𝑒𝐴𝑡 = 𝑃𝑒𝐷𝑡𝑃−1

4. Write the solution as 𝑥 = 𝑒𝐴𝑡𝑥0

5. Plug in the initial conditions directly into 𝑥0 and the answer pops
out.

1https://www.wolframalpha.com/input?i2d=true&i=%7B%7Bi%2C-i%7D%2C%7B1%2C1%7

D%7D%7B%7Bi%2C0%7D%2C%7B0%2C-i%7D%7D%7B%7B-i%2C1%7D%2C%7Bi%2C1%7D%7D*0.5
2https://www.wolframalpha.com/input?i2d=true&i=simplify+%7B%7Bi%2C-i%7D%2C%

7B1%2C1%7D%7D%7B%7BPower%5Be%2Cit%5D%2C0%7D%2C%7B0%2CPower%5Be%2C-it%5D%7D%7

D%7B%7B-i%2C1%7D%2C%7Bi%2C1%7D%7D*0.5

44

https://www.wolframalpha.com/input?i2d=true&i=%7B%7Bi%2C-i%7D%2C%7B1%2C1%7D%7D%7B%7Bi%2C0%7D%2C%7B0%2C-i%7D%7D%7B%7B-i%2C1%7D%2C%7Bi%2C1%7D%7D*0.5
https://www.wolframalpha.com/input?i2d=true&i=simplify+%7B%7Bi%2C-i%7D%2C%7B1%2C1%7D%7D%7B%7BPower%5Be%2Cit%5D%2C0%7D%2C%7B0%2CPower%5Be%2C-it%5D%7D%7D%7B%7B-i%2C1%7D%2C%7Bi%2C1%7D%7D*0.5

Ishan Goel 2 Matrix Flow

We made two leaps of faith: first, we assumed that the solution for a
single variable differential equation 𝑥′ = 𝑎𝑥 generalizes to the matrix
case 𝑥′ = 𝐴𝑥, and second, we assumed that matrix exponentiation is
defined via the Taylor series expansion. We see that making reasonable
choices in our leaps of faith lead to beautiful truths.

45

Ishan Goel 3 Taylor Might

3 Taylor Might

I remember watching a 3Blue1Brown video that ended on the massive
cliffhanger of what 𝑒 d

d𝑥 is (in words, the exponential of the d
d𝑥

operator), and so let’s explore that.

To simplify things, let’s use Heaviside’s notation for the derivative
operator.

𝐷 = d
d𝑥

What’s an operator, you ask? It’s just something that takes in a
function and spits out another function. For example, applying 𝐷
(same as d

d𝑥) to the function 𝑥2 gives 2𝑥.

As usual, let’s start by expanding 𝑒𝐷:

𝑒𝐷 = 1 + 𝐷 + 𝐷2

2!
+ 𝐷3

3!
+ 𝐷4

4!
+ ⋯

Does this maybe feel like an abuse of notation? Like, we’re just using
this Taylor series expansion in a way it’s not meant to? It should. You
could understandably scoff and say that this is complete nonsense. But
again, let’s just be reasonable whenever we run into problems, and see
what happens.

Here’s a bunch of questions you might reasonably ask (in order of
decreasing obviousness)

1. What does multiplying two operators mean???

2. What’s addition??

3. And what does multiplying by a scalar do?

Okay now let’s come up with some reasonable answers.

1. Let’s say that multiplying operators means applying them in
sequence.

46

Ishan Goel 3 Taylor Might

𝐷2 = 𝐷𝐷 = d2

d𝑥2

2. Let’s say that adding operators means applying them and adding
the results.

(𝐷2 + 2𝐷 + 1) sin 𝑥 = 𝐷2 sin 𝑥 + 2𝐷 sin 𝑥 + sin 𝑥
= − sin 𝑥 + 2 cos 𝑥 + sin 𝑥
= 2 cos 𝑥

Ah, but also (𝐷2 + 2𝐷 + 1) = (𝐷 + 1)2, so let’s confirm that gives
us the same answer:

(𝐷 + 1)2 sin 𝑥 = (𝐷 + 1)(𝐷 + 1) sin 𝑥
= (𝐷 + 1)(cos 𝑥 + sin 𝑥)
= (− sin 𝑥 + cos 𝑥) + (cos 𝑥 + sin 𝑥)
= 2 cos 𝑥

Wow, maybe we have some good stuff here.

3. I kind of already used it for the second one’s answer. It’s pretty
obvious:

(1)𝑓(𝑥) = 𝑓(𝑥)
(𝜋𝐷)𝑓(𝑥) = 𝜋(𝐷𝑓(𝑥))

Finally, armed with these reasonable definitions, we now know what
this operation means. We don’t yet know what it actually does, but we
can evaluate it.

𝑒𝐷 = 1 + 𝐷 + 𝐷2

2!
+ 𝐷3

3!
+ 𝐷4

4!
+ ⋯

(Oh, btw, that 1 is an operator. Consider it the identity operator.
Don’t be fooled!)

Let’s apply it to a couple functions and see what happens.

47

Ishan Goel 3 Taylor Might

𝑒𝐷𝑥 = (1)𝑥 + (𝐷)𝑥 +
(𝐷2)𝑥

2!
+

(𝐷3)𝑥
3!

+ ⋯

= 𝑥 + 1 + 0 + 0 + …
= 𝑥 + 1

𝑒𝐷𝑥2 = (1)𝑥2 + (𝐷)𝑥2 +
(𝐷2)𝑥2

2!
+

(𝐷3)𝑥2

3!
+ ⋯

= 𝑥2 + 2𝑥 + 1 + 0 + …
= (𝑥 + 1)2

𝑒𝐷𝑒𝑥 = (1)𝑒𝑥 + (𝐷)𝑒𝑥 +
(𝐷2)𝑒𝑥

2!
+

(𝐷3)𝑒𝑥

3!
+ ⋯

= 𝑒𝑥 ⋅ (1 + 1 + 1
2!

+ 1
3!

+ 1
4!

+ ⋯)

= 𝑒𝑥𝑒
= 𝑒𝑥+1

Perhaps you are noticing a pattern by now… Let’s try something a bit
harder. Let’s try 𝑒𝐷 sin 𝑥.

𝑒𝐷 sin 𝑥 = (1) sin 𝑥 + (𝐷) sin 𝑥 +
(𝐷2) sin 𝑥

2!
+

(𝐷3) sin 𝑥
3!

+ ⋯

= sin 𝑥
0!

+ cos 𝑥
1!

+ − sin 𝑥
2!

+ − cos 𝑥
3!

+

sin 𝑥
4!

+ cos 𝑥
5!

+ − sin 𝑥
6!

+ − cos 𝑥
7!

+ ⋯

= sin 𝑥(1
0!

− 1
2!

+ 1
4!

− 1
6!

+ ⋯) + cos 𝑥(1
1!

− 1
3!

+ 1
5!

− 1
7!

+ ⋯)

Hmm, do those infinite sums look a bit familiar? Let’s remind ourselves
of the Taylor series expansions of sin and cos:

48

Ishan Goel 3 Taylor Might

sin 𝑥 = 𝑥 − 𝑥3

3!
+ 𝑥5

5!
− 𝑥7

7!
+ ⋯

cos 𝑥 = 1 − 𝑥2

2!
+ 𝑥4

4!
− 𝑥6

6!
+ ⋯

∴ sin 1 = 1
1!

− 1
3!

+ 1
5!

− 1
7!

+ ⋯

∴ cos 1 = 1
0!

− 1
2!

+ 1
4!

− 1
6!

+ ⋯

Thus:

𝑒𝐷 sin 𝑥 = sin 𝑥 cos 1 + cos 𝑥 sin 1
sin(𝑥 + 𝑎) = sin 𝑥 cos 𝑎 + cos 𝑥 sin 𝑎 (angle sum)

∴
𝑒𝐷 sin 𝑥 = sin(𝑥 + 1)

Wow. Look at that simplification! That’s crazy. Wow it really does
seem like:

𝑒𝐷𝑓(𝑥) = 𝑓(𝑥 + 1)

Pretty odd. And it seems like Taylor series play a big role. Maybe we
can figure out if this fact is generally true by assuming we have a series
representation of some function 𝑓(𝑥) and then applying 𝑒𝐷 to it. Let’s
try that.

Let’s say that 𝑓(𝑥) has a certain series representation:

𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2
2!

𝑥2 + 𝑎3
3!

𝑥3 + ⋯

𝑓 ′(𝑥) = 𝑎1 + 𝑎2𝑥 + 𝑎3
2!

𝑥2 + 𝑎4
3!

𝑥3 + ⋯

𝑓″(𝑥) = 𝑎2 + 𝑎3𝑥 + 𝑎4
2!

𝑥2 + 𝑎5
3!

𝑥3 + ⋯

… ∴ 𝑓 (𝑘)(𝑥) = ∑
∞

𝑛=0

𝑎𝑛+𝑘
𝑛!

𝑥𝑛

Now let’s apply 𝑒𝐷 to 𝑓(𝑥):

49

Ishan Goel 3 Taylor Might

𝑒𝐷𝑓(𝑥) = 𝑓(𝑥) + 𝑓 ′(𝑥) + 𝑓″(𝑥)
2!

+ 𝑓‴(𝑥)
3!

+ ⋯

= ∑
∞

𝑛=0

𝑎𝑛
𝑛!

𝑥𝑛 + ∑
∞

𝑛=0

𝑎𝑛+1
𝑛!

𝑥𝑛 + 1
2!

∑
∞

𝑛=0

𝑎𝑛+2
𝑛!

𝑥𝑛 + ⋯

= ∑
∞

𝑛=0

𝑥𝑛

𝑛!
(𝑎𝑛 + 𝑎𝑛+1 +

𝑎𝑛+2
2!

+
𝑎𝑛+3
3!

+ ⋯)

= ∑
∞

𝑛=0
(𝑥𝑛

𝑛!
∑
∞

𝑘=0

𝑎𝑛+𝑘
𝑘!

)

Hmm, we don’t really know what that innermost series is. I spent a
couple minutes looking at it until I realized the following:

(As shown) 𝑓 (𝑘)(𝑥) = ∑
∞

𝑛=0

𝑎𝑛+𝑘
𝑛!

𝑥𝑛

𝑓 (𝑘)(1) = ∑
∞

𝑛=0

𝑎𝑛+𝑘
𝑛!

(1)𝑛

= ∑
∞

𝑛=0

𝑎𝑛+𝑘
𝑛!

This is almost the form we want. Now let’s rename 𝑛 to 𝑘 and 𝑘 to 𝑛
to get this:

𝑓 (𝑛)(1) = ∑
∞

𝑘=0

𝑎𝑘+𝑛
𝑘!

Convince yourself that renaming is a valid move. Now we can
substitute this into our expression for 𝑒𝐷𝑓(𝑥):

𝑒𝐷𝑓(𝑥) = ∑
∞

𝑛=0
(𝑥𝑛

𝑛!
∑
∞

𝑘=0

𝑎𝑛+𝑘
𝑘!

)

= ∑
∞

𝑛=0

𝑥𝑛

𝑛!
𝑓 (𝑛)(1)

50

Ishan Goel 3 Taylor Might

This is beginning to look a lot like a Taylor series expansion, except we
seem to be missing the shift. Or are we?! Look:

∑
∞

𝑛=0

𝑥𝑛

𝑛!
𝑓 (𝑛)(1) = ∑

∞

𝑛=0

(𝑥 + 1 − 1)𝑛

𝑛!
𝑓 (𝑛)(1)

= ∑
∞

𝑛=0

((𝑥 + 1) − 1)𝑛

𝑛!
𝑓 (𝑛)(1)

= 𝑓(𝑥 + 1)

That series perfectly matches the Taylor series expansion of 𝑓(𝑥 + 1)
centered at 1. So it seems like we have a general result. If 𝑓(𝑥) has a
series expansion with center 0, then:

𝑒𝐷𝑓(𝑥) = 𝑓(𝑥 + 1)

It’s easy to see that we can extend this to any center 𝑐 by constructing
a new function 𝑔(𝑥) = 𝑓(𝑥 + 𝑐) and then applying the above result to
𝑔(𝑥). Thus, if 𝑓(𝑥) has a Taylor series expansion, applying the
exponential of the derivative operator to it shifts the function by one!

A natural question to ask at this point is whether we can create any
shift. For example, it’s easy to see that applying 𝑒𝐷 twice should shift
𝑓(𝑥) by 2. But also:

𝑒𝐷𝑒𝐷𝑓(𝑥) = (𝑒𝐷)2𝑓(𝑥)

𝑓(𝑥 + 2) =!? 𝑒2𝐷𝑓(𝑥)

Huh. Based on this, we can see that it could be reasonable to
conjecture that:

𝑒𝑠𝐷𝑓(𝑥) = 𝑓(𝑥 + 𝑠)

If we go through the earlier proof again but with 𝑠 this time, it’s not
hard to see that:

𝑒𝑠𝐷𝑓(𝑥) = ∑
∞

𝑛=0

𝑥𝑛

𝑛!
(∑

∞

𝑘=0

𝑎𝑛+𝑘
𝑘!

⋅ 𝑠𝑘)

51

Ishan Goel 3 Taylor Might

Also not too hard to see that:

𝑓 (𝑛)(𝑠) = ∑
∞

𝑘=0

𝑎𝑘+𝑛
𝑘!

⋅ 𝑠𝑘

And so:

𝑒𝑠𝐷𝑓(𝑥) = ∑
∞

𝑛=0

((𝑥 + 𝑠) − 𝑠)𝑛

𝑛!
𝑓 (𝑛)(𝑠)

= 𝑓(𝑥 + 𝑠)

Thus we have this general result. If 𝑓(𝑥) has a Taylor series expansion,
then:

𝑒𝑠 d
d𝑥 𝑓(𝑥) = 𝑓(𝑥 + 𝑠)

Wow! Scaling the derivative operator by some number, then applying
the exponential of that operator to a function, shifts the function by
that number. Isn’t that beautiful?

Why might this be useful? Great question. I guess, for example, you
could derive the angle sum formula. Do let me know if you think of
something. But also it’s kind of just pretty.

More abuses of notation to consider:

𝑒𝑖𝐷𝑓(𝑥) =? (cos 𝐷 + 𝑖 sin 𝐷)𝑓(𝑥) =? 𝑓(𝑥 + 𝑖) Pretty sure this is fine

(𝑒𝐷)∫𝑓(𝑥) =? (𝑒𝐷 ∫)𝑓(𝑥) =? 𝑒𝑓(𝑥) Nonsense

𝑒𝐷𝑒−𝐷𝑓(𝑥) = 𝑓(𝑥) Definitely true

Try the first one! Another thing to try is to prove that the shift
operator works for monomials without using Taylor series. You can
then extend that to polynomials and then to all functions with series
representations.

52

Ishan Goel 3 Taylor Might

But I do want to remind you that notation abuse doesn’t always work
out:

𝑒𝑖𝜋 = 𝑒−𝑖𝜋 = −1
𝑒𝑖𝜋𝐷 =? 𝑒−𝑖𝜋𝐷

One side shifts functions by 𝑖𝜋 and the other by −𝑖𝜋, so it’s definitely
not true. (Do you see why it works in one case but not the other? Hint:
inverse.)

I still think most people are too abuse-of-notation averse, so I
encourage you to try that. Have fun and play responsibly!

53

54

How to NOT build a game

controller in 10 easy

steps

By Alexander Kutulas

December 11, 2025

Have you ever wanted to NOT build a game controller? Well don’t worry; you’ve

come to the right place! In just 10 EASY STEPS, you’ll be able to NOT build all the

game controllers that you desire. And by all the game controllers, I mean just a

single custom game controller called a Wii Baton, which is just a Wii Remote except

with the A button, the 1 Button and the 2 Button replaced with a poor motion

mapping system that is ONLY useful for playing Mario Kart Wii. So without further

ado, “let’s-a go!”

Figure 1: Picture of NO game controller

55

1. Design a 3D model without understanding

ANYTHING about constraints

,

Figure 2: Constraints in Fusion 360

Figure 3: References in Fusion 360 (each

‘fx’ indicates a reference, which is why

the dimensions are shared; changing the

dimension being referred to will change

all of the references)

Figure 4: Trying to Frankenmesh

separately designed parts together

56

1. Design a 3D model without understanding

ANYTHING about constraints

First, you’re going to want to design the body for your controller whilst thinking

you’re a Fusion 360 (a 3D CAD, Computer Aid and Design software) hotshot,

having designed approximately 31
2 models in the past. Completely ignore incredibly

useful features such as constraints (Figure 2), which help with alignment and

positioning, and references (Figure 3), where you can have dimensions equal one

another – by selecting the dimension that you want to edit and then selecting the

dimension that you want it to equal - because you don’t know they exist. In

particular, constraints such as:

• Coincident (constrains the position of two points together)

• Parallel

• Horizontal/Vertical

• Midpoint

• Symmetric

are incredibly useful, so make sure to avoid these! Finally, make sure to underuse 2D

sketches; these are a core component of 3D design where you first design in 2D and

then extrude your sketch outwards to add thickness, making it 3D. They can make

your model more precise and easier to edit, and we wouldn’t want that, so instead

pretend you’re using Blender and sculpt using the extrude and push/pull options in

3D mode to Frankenmesh your parts together (Figure 4) instead of making exact

measurements in sketches.

57

2. Panic regarding sensor fusion

Figure 5: Adafruit LSM9DS1 9-DOF sensor

Figure 6: MotionCal sensor calibration software

58

2. Panic regarding sensor fusion

Next, assuming that you’ve already spent way too much time idly stripping wires

while staring at a breadboard, you’re going to NOT want to combine your 9 degrees

of freedom of data (3 axis magnetometer, 3 axis gyroscope, 3 axis accelerometer)

from your Adafruit LSM9DS1 sensor (Figure 5). Using the axes independently is

much better, as the gyroscope drifts, the accelerometer is impacted by external

accelerations like gravity and the magnetometer is susceptible to local magnetic

disturbances, so if you don’t:

• Represent the sensor’s orientation using a quaternion, a 4D number like

q=w+xi+yj+zk, where w represents the magnitude of the rotation and

x, y, and z represent the axis of rotation

• Predict the new orientation using the gyroscope data

• Compare the prediction’s gravity and magnetic north vectors to the measured

gravity and magnetic north vectors. The difference is the error

• Adjust the quaternion 𝛽 times to minimize the error (gradient descent)1

then your sensor data will be extremely inaccurate, thus impairing your ability to

make a game controller using those sensors. And while we’re at it, make sure to

forget to calibrate your sensor! Definitely don’t use incredible open source

calibration software like MotionCal (Figure 6), that will take measurements as you

rotate and move your sensor 9 different times (1 for each axis) and create a

calibration sphere as you go, showing the values that your sensor is taking as a

reference, as well as showing you where you might still need to calibrate.

1Explanation based on my understanding of a Madgwick filter; for more in-depth information
read someone else’s explanation, like Sebastian Madgwick’s [1]

59

3. Implement a complicated finite state

machine and subsequently take a month off

Figure 7: Diagram representative of the quality of my state machine code

60

3. Implement a complicated finite state

machine and subsequently take a month off

Now that you’ve got a poor 3D model that you will most assuredly have to redesign

and wildly inconsistent sensor data, it’s time to write overly complicated state

machine code2! For example, track the state of the motion of your arms while

running and classify these motions between 5 different states:

1. IDLE

2. UP_FROM_IDLE_TO_UPPER_PEAK_FRONT

3. DOWN_FROM_UPPER_PEAK_FRONT_TO_LOWER_PEAK

4. UP_FROM_LOWER_PEAK_TO_UPPER_PEAK_BACK

5. DOWN_FROM_UPPER_PEAK_BACK_TO_LOWER_PEAK

and make sure to utilize lots of arbitrary constants to make the distinction between

states, such as:

const float IDLE_ENTRY_MAG_THRESHOLD = 1.5f;

const float IDLE_EXIT_MAG_THRESHOLD = 2.5f;

const float SIGNIFICANT_DROP_FROM_PEAK = 1.0f;

const float SIGNIFICANT_RISE_FROM_VALLEY = 1.0f;

const float TREND_DETECTION_SENSITIVITY = 0.3f;

const int MIN_POINTS_FOR_PUMP = 10;

that will make it incredibly difficult and overwhelming to work with the codebase!

2I ended up scrapping this approach in favor of just normalizing and detecting motion in general
for simplicities sake

61

4. Attempt to solder in the air because

'who needs PCBs anyway'

Figure 8: Home soldering setup

Figure 9: Well that could’ve gone better

62

4. Attempt to solder in the air because

'who needs PCBs anyway'

Now time to put it all together! Let’s solder it all together by hand in the garage

(Figure 8) on top of one of mom’s ceramic pot lids that you found. We’re using

mom’s ceramic pot lid as a base because soldering joins metallic connections by

melting a filler metal (fittingly named ‘solder’3), and ceramic, surprisingly enough, is

not metal, meaning that the solder won’t join itself to the base. We can also use

mom’s ceramic pot lid as a substitute for a printable circuit board (PCB).

A PCB functions as a great base for electronics projects, with tools such as

footprints, schematics and the PCB editor that allow you to design a board to fit

both your physical and electrical specifications. Footprints define the physical

layout of electrical components; for example how big something is or how far apart

pads (electrical connection points, often represented as a gold circle) on components

are spaced. Schematics are where you design your electrical circuit, defining what

is connected and where. Finally, the PCB editor is where you put it all together,

placing and aligning your electrical components on your board. Different parts of

the board will go on different layers of your PCB. Your pads will likely go on a

mask layer, where solder mask will not be applied, allowing you to solder to your

pads. The electrical connections that you made will take on the form of traces,

copper paths that provide conductance between electrical components and which

will be on a Cu (copper) layer. Any text or outlines will go on a silkscreen layer,

which is essentially an ink coating that provides more information regarding your

PCB. After you’re done designing your PCB in an incredible open source software

like KiCad, you can get it fabricated from a manufacturing company such as

JLCPCB and then use it in your hardware projects!

All of this is exceedingly useful, so make sure to avoid designing and using a PCB

and instead solder everything messily in the air with tons of wires so that it won’t fit

into your small 3D model! Components will shift around (Figure 9) and the single

wire that you plan on using for ground gets really hot every time you try to solder

to it and so you’ll accidentally burn yourself a couple times, which should help

discourage you from making a game controller.

3Note that solder does contain lead which can increase the risk of lung cancer if inhaled; if you
plan to solder, I would recommend doing it in a well-ventilated space and use a fume extractor if
you have one

63

5. Design the PCB too big because you

extrude the 3D model body INWARDS instead

of OUTWARDS

Figure 10: 2.4mm off? I’m sure it’ll fit, you just gotta jam it in there

64

5. Design the PCB too big because you

extrude the 3D model body INWARDS instead

of OUTWARDS

If you still haven’t failed to fail making a game controller at this point, you might’ve

gone against my earlier advice and designed a PCB to make soldering easy and fit

components inside your 3D model. In that case, don’t export a DXF file from Fusion

360 and import it into KiCad via File > Import > Graphics to properly size your PCB,

or, even if you do, make sure to forget that you extruded your 3D model INSIDE

when adding thickness to the model. This will ensure that the PCB doesn’t fit inside

(fig 10), and successfully aid you along your quest to not build a game controller.

65

6. Space the holes for your ESP32 2.7mm

instead of the breadboard-standard 2.54mm

Figure 11: I prefer my pins at 45° angles

66

6. Space the holes for your ESP32 2.7mm

instead of the breadboard-standard 2.54mm

Even if you decide to remake your 3D model to fit your PCBs, make sure that when

you design your footprints that you find a way to ignore KiCad’s grid and

incorrectly space your pins for your ESP32 microcontroller – an Integrated

Circuit (IC) that contains key modules such as Bluetooth and Wifi – by about

0.2mm. Definitely at this point you should succeed in failing to make a game

controller and not try to bend the pins into the PCB (Figure 11).

67

7. Have your computer shut down when your

circuit is connected via USB because

there's a short

Figure 12: short

68

7. Have your computer shut down when your

circuit is connected via USB because

there's a short

Next on the agenda is to solder GND (the path of least resistance) and 5V (POWER)

together on your Adafruit Miniboost – another microcontroller to boost the

voltage and current of a power input – and then NOT do a continuity test using

your digital multimeter. Continuity tests are typically done to ensure that

connection points like pins and pads are electrically connected, as well as to ensure

that they AREN’T connected to each other. The multimeter in fig 12 is currently set

to continuity mode; in this mode if you touch the ends of the probes to pins/

components the multimeter will beep if they are connected4. This will ensure that all

of the electrons rush out of your laptop to go party at Miniboost’s place along the

trace highlighted cerulean (Figure 12) and then cause your laptop to shutdown.

4DON’T do continuity tests while the circuit has power; this could damage your multimeter or
possibly even the circuit itself. This is because during a continuity test the multimeter outputs a
small current, and so if the circuit is live you can create a short depending on how you insert the
probes into the circuit

69

8. Realize that bluetooth doesn't work

because apparently RF zones on PCBs are a

thing

Figure 13: The ESP32 wants to be CLOSE friends with the GND vias and the

LSM9DS1

Figure 14: No more friendship; social distancing

70

8. Realize that bluetooth doesn't work

because apparently RF zones on PCBs are a

thing

Next, if you placed your ESP32 antenna (the square wave looking thing in Figure 13)

near copper (e.g. ground vias) or other components like the LSM9DS1 so the

antenna could have friends, you’ll be in good shape. Copper placed in the path of the

signal can cause impedance, reflecting part of the signal or causing it to take

inefficient paths, and components like the LSM9DS1 can create additional noise

when communicating using the I2C (Inter-Integrated Circuit) protocol. The I2C

protocol utilizes 2 main lines (buses) of communication; the clock (SCL on

Figure 13) and the data line (SDA on Figure 13). The clock is used to synchronize

data transfers between the sender and receiver, and the data line contains the data

and an ID to identify the sender. In the process though, if the clock is high speed

enough it can create noise. All of these can interfere with the Bluetooth signal,

meaning they’ll help you be well on your way to NOT making a game controller.

However, if you actually wanted to make a game controller, you might want to

remove your LSM9DS1 from your PCB by giving it a quick buzz cut (mangling the

pins) to get it out of the PCB and practice social distance with the ESP32 by moving

them away from one another using wires (Figure 14), but we don’t want to make

game controllers, so there’s no need to do that.

71

9. Break the MKWii physics engine by

tampering with the speed

Figure 15: Welcome to the Wonderful World of Power PC Assembly

Figure 16: New YouTube Challenge Run: Can you beat Mario Kart Wii if you can’t

move from the start line and the game is rotated 180° for some reason?

72

9. Break the MKWii physics engine by

tampering with the speed

If you somehow succeeded in getting the PCB assembled and functional, there’s still

plenty of software issues for you to fail at. For example, adjusting the speed of your

character using Dolphin Emulators’ built in cheat code system for the Gecko

processor on the Wii. These gecko codes allow you to inject machine code into

specified memory regions to execute during gameplay and are a great way to crash

the game or cause an error state! Most memory addresses aren’t safe to inject code

into, but there are a few hook addresses where it is safe to inject machine code, so

make sure to avoid hook addresses like 0x80571CA4. If you inject your assembled

PowerPC Assembly code ([2]) at 0x80571CA4, the program will be in a state where

you can edit the base speed of your kart by writing to memory (shoutouts to

JoshuaMX for his code that does just that [3]). Don’t worry though; you still have a

chance to crash the game! If you write an ‘invalid’ speed value, you’ll break the

Mario Kart Wii Physics Engine (Figure 16), so make sure to avoid valid values such

as:

• 0 km/h = 0x0000

• 5 km/h = 0x41C8

• 50 km/h = 0x4248

• 100 km/h = 0x42C8

• 150 km/h = 0x4316

• 200 km/h = 0x4348

Also make sure to avoid incredible tutorials such as Vega’s The Basics of Wii Cheat

Codes & the Gecko Code Handler [2]; these will describe the Gecko code system in

incredible depth, discussing useful commands such as C2XXXXXX 000000YY,

which will inject YY lines of assembly at memory address 80XXXXXX (80000000 is

the start of the memory address block used in the Wii for games).

73

10. 'Fits' of frustration

Figure 17: “It’ll fit if you try hard enough”

Figure 18: Soldering iron meets PLA

74

10. 'Fits' of frustration

If – by some manner of ungodly determination and will – you have made it this far

without having succeeded in failing to make a game controller, then frustrations

during the assembly process may aid you in your quest. Hopefully your tolerances

will be slightly off, with buttons being automatically pressed by front covers and

edges not lining up (Figure 17). Don’t use your soldering iron to make the back

button fit (Figure 18) or redesign your front cover to elongate the DPAD because you

misplaced the buttons on the PCB.

75

Conclusion

By this point, I hope you’ve managed to fail in making a game controller. If, against

all odds you have not, I’m truly sorry; perhaps throwing your completed controller

against the wall may help? Otherwise, you might as well make the most of it and

use your new controller to do a literal Mario Kart Wii speedrun.

After all, you’ve succeeded: in failing spectacularly.

76

References

[1] Sebastian Madgwick, “An efficient orientation filter for inertial and inertial/

magnetic sensor arrays.” [Online]. Available: https://courses.cs.washington.edu/

courses/cse466/14au/labs/l4/madgwick_internal_report.pdf

[2] Vega, “The Basics of Wii Cheat Codes & the Gecko Code Handler.” [Online].

Available: https://mariokartwii.com/showthread.php?tid=434

[3] JoshuaMK, “Max Speed Modifier.” [Online]. Available: https://mariokartwii.com/

showthread.php?pid=3906

Special thanks to Grace for encouraging me to stick with the project and answering a

ton of my questions along the way, to Hazel for the PCB Design advice and board

review, and to Kartavya for reviewing this artifact and providing invaluable advice.

77

https://courses.cs.washington.edu/courses/cse466/14au/labs/l4/madgwick_internal_report.pdf
https://courses.cs.washington.edu/courses/cse466/14au/labs/l4/madgwick_internal_report.pdf
https://mariokartwii.com/showthread.php?tid=434
https://mariokartwii.com/showthread.php?pid=3906
https://mariokartwii.com/showthread.php?pid=3906

78

Self-Improvement,

Habits, and iPods

The Tinkerer's Guide to Ditching

Your Phone

Grace Yoder

I wouldn’t say I’m addicted to my phone, but I also wouldn’t say I have a

healthy relationship with it. Like most people, I spend more time than I

would like on my phone doing a variety of unhealthy behaviors. I spent

so much time on my phone that at some point I turned off Screen Time

tracking because I didn’t like seeing how many hours I was spending

on it. A typical day for me would typically include 7–10 hours of phone

usage and over 100 pickups — that’s about once every 10 minutes for

all my waking hours.

Using my phone this much just feels gross. I didn’t like the feeling

that every waking moment of my life I was drawn to this magical

computer slab in my pocket the same way a moth is drawn to light. Any

moment of downtime would immediately be sucked up with a billion

different apps and websites all trying to get me to stay there as long

as possible. At the same time, I couldn’t just get rid of my phone. My

phone is a miracle device that can and does add significant value to my

life. This device can connect me with people from across the world in

real time, it knows where I am down to the meter, it can tell me exactly

where to go when I get lost, it can capture a moment in time for me

to look back at, it can let me into my building when I return home, it

teaches me new ideas, and it allows me to learn more about the world

79

I am in. It does all of that while fitting in my hand. I can’t just get rid of

it, as my life (and modern life in general) is built around it, but I need

to be healthier about it.

Now, I am not the first person to express these thoughts. There are

many ways to go about reducing unhealthy habits while still keeping

the utility of your phone. About a year ago, I met up for lunch with a

friend that I hadn’t seen for a while. At one point, he pulled out his

phone and the way it looked shocked me. I asked him about it, and

he showed me how he set his phone to black and white, gotten rid

of all the apps on his home screen, and set a 15 minute limit on most

trivial and unhealthy apps, all to help him reduce his dependence on

his phone while still keeping it. I would consider to be drastic action,

and many people are just able to set reasonable limits on their usage.

I tried both reasonable limits and this more intense limit, but it wasn’t

enough for me. If I set it up, I could also bypass it, and having everything

still be there is too tempting for me. I had to do something that would

be harder for me to get around.

When SIGHORSE was announced, I decided to partake in a very

ambitious project: fully getting rid of my phone. To do this, I would

need to reorganize my life and replace all functionality of my phone

with other devices. I think this is objectively one of the worst way to

go about breaking habits, but I also knew this would allow me to see

things in my life that I would otherwise be blind to.

Spoiler: I was not able to get to the point of leaving my phone at

home at any point during this summer. However, I am prepared to do

just that when the semester starts, and many of my bad habits have

been changed or even fully broken.

So What Am I Actually Going to replace

There is a short list of the main useful functions of my phone:

• texting/general communication

80

• navigation in new places

• starting time tracking timers and managing to-do items

• key card to dorms and other campus buildings

• mobile hotspot

• recreationally watching YouTube

• listening to YouTube in the background while sleeping

• listening to podcasts while going between places

• camera (particularly for Retro)

These are all various levels of difficulty to solve for me. I can watch

YouTube on my iPad. Texting/communication can all be done on my

Mac or iPad, since I am (far too deeply) embedded in the Apple ecosys

tem. Navigation isn’t an issue, since I am on a college campus and

generally know where things are without maps. Also, Wi-Fi blankets

campus so I do not need to worry about having a mobile hotspot.

Timers, todos, and the keycard are solved with my Apple Watch con

nected to WiFi. Lastly, I will keep my phone in my dorm room hooked

up to a charger most of the time, but will be able to use it at night so I

can listen to video to help me fall asleep.

Most of these solutions are better than the alternative. Watching

items on a bigger screen and messaging on a device with a real key

board both benefit from me taking the time to take out a device better

suited to the task.

This just leaves podcasts and a camera to be replaced. How hard

could that possibly be?

Going Through iPod Hell

I will not talk about everything relating to iPods and podcasts here

because the inane technical bullshit these devices put me through is

mostly a distraction and irrelevant to the focus of this article. However,

let it be known that I am not finished with these little electronic devils,

and you can expect a longer piece about the technical side of iPods

81

and other DAPs in the future. For this, all you need to know is I started

carrying two iPods:

• a 64 GB flash-modded iPod Mini running Rockbox with podcasts

managed by my custom podcatcher called OxiPodder1 that made it

super easy to sync podcasts whenever I plugged it in

• an 8 GB 4th generation iPod Nano loaded up with my YouTube Music

playlists.

Figure 1: My Flash-Modded iPod Mini

1https://github.com/gyoder/oxipodder

82

https://github.com/gyoder/oxipodder

When they worked, I absolutely loved using my iPod for podcasts.

iPods are actually nice objects and feel great to hold. Using the click

wheel to scroll through menus to select what I want to listen to and

skipping forward or backward 15 seconds or pausing by clicking a real

physical button is great and satisfying.

I would use it every day on my commute to work, when I would

workout, and other moments during the day that I would always listen

to a podcast. Having a separate device for podcasts removed the urge

for me to change what I was listening to and play something else, or

worse, start browsing YouTube. This gave me back the space that urge

was taking in my mind and it feels calmer and clearer, even in a small

way.

During this summer, I went on two road trips. The first one was with

friends driving to Salt Lake City and Moab. I actually didn’t use my

player much on this trip and only listened to a single podcast. However,

that wasn’t because I was using my phone. Other than occasional

navigation, I didn’t use my phone at all. I think this was only possible

due to having that urge to grab my phone removed, so at no point

during the long ride did I even want to use it for entertainment.

My second road trip was to see family in Missouri. Due to unforeseen

accidents (dropping an iPod at a gas station and falling off a jet ski

with one I forgot to take out of my pocket), I had no iPod with podcasts

for the way back, so I grabbed my phone and used that, since I was

not about to go without anything for a 12-hour trip. What shocked me

was the ripple effect this had on returning to all my old bad habits. The

next morning, I found myself watching YouTube Shorts while eating

breakfast before going to work. Additionally, that urge to grab my

phone and change whatever I was listening to came back. Did they

come back because I used my phone like I did before, or because I was

a bit tired and it’s easier to slip back into habits when you are mentally

exhausted? I suspect a mixture of both, but it was a good reminder of

what I was working to get rid of.

83

Figure 2: My iPod Mini needed a lot of repairs during its life

As much as I liked the iPods as a solution, they were not perfect. Nei

ther the stock firmware or Rockbox are really designed for podcasts,

so there are a lot of paper cuts. Additionally, it was a massive time sink

for me to do this. I probably spent a minimum of 30 hours researching,

modding, fixing, and debugging iPods and writing my own program

to track and sync podcasts. Once I write a longer piece on that, I hope

it won’t be as difficult for others to do the same, but it won’t ever be a

fault-free solution. Also, it’s expensive. I have probably spent upwards

of $150 on all my iPod and parts. Despite all of this, when it worked, it

really worked. I don’t see myself without an iPod (or other Digital Audio

Player) for a long time.

84

Replacing My Camera

At the start of this summer, I was roped into using an app called Retro.

In a gist, Retro is a shared photo album only for friends. It does not feel

like social media at all and really helped me connect with friends while

I wasn’t physically close to them. I never really got sucked in a death

spiral on Retro since you can get to the end of it after 5 minutes. It also

made me take at least one photo almost every day, which is great for

documenting my life to look back on later.

This made it incredibly important for me to have a camera that time

stamps and geotags photos and was small enough for me to carry with

me. Turns out, not really a thing in the modern day. Because phones

have such good cameras, no one makes a modern point-and-shoot

digital camera for about $100-200, since you can’t beat the quality at

that price point. There is a narrow range of cameras that have GPS in a

small point-and-shoot form factor, but the used camera market is very

expensive sadly. I found a few that looked good, but I already spent all

my money on iPods so I was unable to justify buying one.

On my first road trip with my friends, I dusted off our family’s old

Nikon Coolpix point-and-shoot and took it with me. Notably, this was

too big and didn’t have GPS so didn’t meet my requirements for a daily

carry, but it was still nice to take photos with. The resolution doesn’t

look great, but I was able to get better photo composition using the

optical zoom of the camera. I enjoyed it much more than phone pho

tography, so I will likely shell out for a used point-and-shoot at some

point in the near future.

85

Figure 3: Photo from Canyonlands National Park

Figure 4: Photo from Arches National Park

86

Figure 5: Photo of road from Canyonlands National Park

My current camera solution is another iPod. This time, it’s an old 5th-

gen iPod Touch found when cleaning out old tech. This is a shockingly

good solution. Even though it is stuck on iOS 12, it is still able to

sync all of its photos to iCloud (Apple does a surprisingly great job of

supporting old hardware and software) and even includes GPS data.

Additionally, it being stuck on iOS 12 is actually an advantage since

there are almost no compatible apps (I have found zero) and the

browser is so out of date that it can’t load most modern single-page

JavaScript apps. So far I have only gotten YouTube to work, but the

YouTube mobile site sucks so much to use that this isn’t an issue. This

basically makes it a dedicated camera. The biggest downside is it’s

battery is shot, and it has about the quality that you would expect from

a $200 device that was discontinued a decade ago. I will eventually get

a real camera, but for now, I am happy with this.

87

Figure 6: iPod Touch 5th Generation

Nothing Quite Beats Pen and Paper

Phones are so good at everything that it is easy to be caught off guard

if you don’t have one on you. There are little things that you don’t

normally think about, like paying a friend on Venmo or needing to scan

a QR code. While these do come up, they are mostly solved by another

item I started to carry on me: a notebook. Rarely is anything that you

need to do so urgent that it cannot wait until you finish the day and go

back home. Because of this, you can write it down in a notebook and

look at it later.

88

Additionally, I think that writing things out by hand, whether it be

notes, logs, or ideas, is really beneficial. Handwriting helps with mem

ory, and being able to mix in sketches, arrows, and everything else

pen and paper allows for makes it easy to map out ideas in progress.

It also just feels so nice. There is one very notable personal downside;

My handwriting is historically bad and I often struggle to read what

I’ve written down. However, this is balanced out by the memory advan

tages mentioned earlier. Ultimately, adding a notebook to my daily

carry has been super nice.

Reflection

In Fall of last year, my first semester at Purdue University started. That

person isn’t me, or at least not who i am now. Ever since the first day

that i have stepped on campus, my life has changed drastically. i have

changed so much. i started working on super cool projects, i have met

some really amazing people, i actually came out after 5 years. The life

i have now is just significantly better than when i started and that

doesn’t seem to be changing any time soon.

Starting at the end of last semester, a new thought started echoing

around in my brain.

oh god, i graduate in 2 years. i am almost a third of the way

though my time here. i only get to do this again 2 more times.

everything went so fast. if it continues at this rate … but i cant

leave. this place has made my life better. i cant leave the people

i met. i cant leave everything ive built here. i love it here. what

happens when i get out. i dont want my life stop getting better. it

cant be over so soon. it cant finish before im ready…

To this day, i still have this thought and it gets me really worked up and

anxious.

89

…

Everything you have read up until this reflection section was written

in August. It is now late September. I have written the conclusion many

times and every time I hated it. It always felt like it was disingenuous,

like I was trying to give you something that didn’t exist.

A lot of the challenges that I faced when writing about this were the

external deadlines. Because of the nature of SIGHORSE, I was working

within a deadline so this project had to be over before it would naturally

finish. I wasn’t even able to really go out without my phone. Normally,

something like this would be okay. If this was a story about technology,

I wouldn’t have had this issue. But it isn’t a story about technology. It’s

a story that involves technology but is about me.

I tried to give some insight, some revelation, into my life and how I

changed during this adventure. I wrote a cute little conclusion about

how my life improved throughout this process and urged others to

think about their life. It was an ending, but it wasn’t great. It wasn’t

something that made a lot of sense in where I was in my life. My

relationships to everything I wrote about was still changing

Then, something magical happened. SIGHORSE had review cycles.

All of the sudden I was granted extra time and could write an ending

that I liked more. I talked to some friends about the ending and wrote

another one. This time I left the book open making sure to talk about

how I still have a lot to learn about where this fits in my life and keeping

it open for me to add to in the future. This just didn’t feel satisfying. No

mater how much I pretend otherwise, SIGHORSE is coming to an end

and I need to acknowledge that.

…

During the darkest and brightest times in my life, i have always told

myself “this too shall pass.” i couldn’t tell you where i first heard it, but it

stuck with me. i was talking to a friend about my struggles with writing

this ending. i told them about my insecurity about when college is over

and they talked about how change was scary.

90

it surprised me when they said that, because thats not what i said.

i said that i was scared that my life was going to stop getting better

when i left. That i was going to lose everything i gained here. That i was

scared of … oh.

that i was scared of how my life was going to change when i was

done.

…

Doing this adventure did make my life better and it would be silly for

me to believe that once i submit this draft for SIGHORSE, that i would

lose the personal progress i made. i will still have better habits and a

cool new interest. it’s also silly for me to think that everything i wrote

about would stay static just because this project is over. i have another

70 years left in my life (optimistically anyway) so of course i will keep

changing and of course my life will keep getting better throughout

those years. just because one of the best chapters in my life will end,

doesn’t mean i won’t find another one that will make me even better.

it’s a lot more satisfying to let something truly end and i need to be

okay with it. i have a long time until i graduate so ill make the most of it,

but when the end comes, ill be there in an open embrace to celebrate

it and everything that’s next.

this too may still pass, but i shall be out there, searching for what is

after

91

92

93

Sarlacc: A Rust crate for lock-free interning of data
Henry Rovnyak

Abstract. In this report, I describe everything that I learned in the process of creating the Sarlacc

crate in Rust, which is a lock-free implementation of interning. I describe the process and pitfalls of

programming using atomics, as well as of creating a lock-free concurrent data structure. I discuss

the fundamentals of atomic operations, memory ordering, and operating on pointers. Then I show

how they apply to the Ctrie data structure and its implementation in the Sarlacc crate.

Introduction
Concurrency, the idea of doing multiple things

at the same time, is an important feature of

modern computer systems. For example, we

can use it to speed up our programs by per

forming different aspects of a computation

in parallel, or we can use it to improve the

throughput and latency of our web servers by

processing multiple requests concurrently.

Note that there are actually two kinds of

concurrency: First, modern CPU chips are

actually made up of multiple mini-comput

ers wired together called cores, confusingly

also called CPUs. Your operating system can

put each of your concurrent operations, or

threads, on different cores, allowing them to

execute at literally the same time. This is

called parallelism, which is a special case of

concurrency.

However, if your operating system needs to

run more threads than your computer has

cores, it will be literally impossible to execute

all of them in parallel — your operating sys

tem needs a mechanism to assign threads to

cores such that all tasks get finished. This is

done by instructing the cores to pause what

they’re doing and switch to a executing a

new thread every few milliseconds. This is

called context switching. It doesn’t improve

performance, but it allows all tasks to make

progress, as opposed to letting some stall due

to having to wait for other threads to finish.

From the perspective of a programmer how

ever, we have no clue whether or not our

threads will be executed truly in parallel

or when or how often our threads will get

stopped and restarted. Therefore, we have

to engineer our code to function regardless

of how our threads interleave in time and

between CPU cores. This would be completely

unproblematic if our tasks didn’t depend on

each other at all, but in real systems, threads

will need some way to communicate and

share information, requiring some form of

synchronization. There are a lot of ways that

this can go wrong.

The following code, where two threads incre

ment a counter in parallel, illustrates a race

condition — a situation where the output of a

program depends on the unspecified order of

execution of its concurrent threads of execu

tion.

// Rust knows that what we're doing is

terrible; all of the unsafe is to stop the

compiler from trying to stop us

let mut number: u64 = 0;

let ptr = (&mut number) as *mut u64 as usize;

let handle = thread::spawn(move || {

 for _ in 0..1000000 {

 // Use volatile reads and writes to

prevent the compiler from collapsing them

into one operation

 let mut num = unsafe

{ read_volatile(ptr as *mut u64) };

 num += 1;

 unsafe {

 write_volatile(ptr as *mut u64,

94

num);

 }

 }

});

for _ in 0..1000000 {

 let mut num = unsafe { read_volatile(ptr

as *mut u64) };

 num += 1;

 unsafe {

 write_volatile(ptr as *mut u64, num);

 }

}

handle.join().unwrap();

// Almost guaranteed to NOT be 2000000

assert_ne!(number, 2000000);

This is a simple example, I swear 😅! Most

of this is begging the compiler not to stop me

from writing this horrible code and begging

it to not optimize it to hide the issue. What is

going on is that we’re incrementing the same

memory location over and over again from

two different threads.

You can see that performing an addition

requires three stages. A memory read, an ad

dition, and a memory write. I separated those

stages to prevent the compiler from collapsing

the loop, but even if I just used a simple num +=

1, the underlying implementation in the hard

ware would still require performing those

three stages. The reason that the number

printed is almost certainly not 2000000 is that

it can happen that both the spawned thread

and main thread can read, say, the number

1234 at the same time, perform the addition,

and write 1235. Two additions should have

been performed, but it looks like only one has.

It may appear that operations that have only

one stage are safe, for example maybe a single

write_volatile. However, who knows how

it’s implemented in the CPU? It could be

implemented in lots of different stages for all

we know. Second, from the perspective of the

CPU, it would be valid for the write to only

be applied to a CPU core’s local cache without

being flushed to main memory. Then other

threads wouldn’t be able to observe the write

which would cause all kinds of issues. I will

elaborate more on this issue in later sections.

The classical resolution to this problem is to

use a lock — a thing that will invoke CPU

synchronization primitives to force threads to

wait if they need to access data that is already

being accessed by another thread.

// `Arc` allows us to share the `Mutex`

between threads without using unsafe code.

let number = Arc::new(Mutex::new(0_u64));

let number_for_thread = Arc::clone(&number);

let handle = thread::spawn(move || {

 for _ in 0..1000000 {

 // Locking the mutex prevents the

main thread from accessing the number until

the end of scope

 let mut num =

number_for_thread.lock().unwrap();

 *num += 1;

 }

});

for _ in 0..1000000 {

 let mut num = number.lock().unwrap();

 *num += 1;

}

handle.join().unwrap();

// Guaranteed to be `2000000`

assert_eq!(2000000, *number.lock().unwrap());

The problem with this is that we’ve immedi

ately lost all benefits to using threads because

threads have to block each other to be able

to do work. When programming with locks,

you have to think very hard to minimize the

number of threads that need access to data

behind a lock at any given time. The more

subtle issue is that if the main thread gets

interrupted while holding the lock, the new

95

thread will stall until the main thread gets

rescheduled to release the lock.

Locks also have a lot of overhead because

they typically involve invoking the operating

system. This is necessary so that the CPU core

can be rescheduled to do something useful

while waiting, or simply get turned off to

conserve power.

The solution that I’m building up to and

the entire subject of this report is atomics

— the aforementioned hardware synchroniza

tion primitive that allows us to build concur

rent systems without blocking or invoking the

operating system, and while preserving the

benefits of parallelism.

Atomics effectively guarantee that an opera

tion is performed in one stage; it’s impossible

for any CPU core to observe an intermediate

stage of an atomic operation. This also implies

that the atomic operation must immediately

be visible to other threads and that it can’t be

hidden in the local cache of a CPU core.

let number = Arc::new(AtomicU64::new(0));

let number_for_thread = Arc::clone(&number);

let handle = thread::spawn(move || {

 for _ in 0..1000000 {

 // Atomically add one to the number.

 // Ignore the `Ordering` parameter, I

will talk about it later.

 number_for_thread.fetch_add(1,

Ordering::Relaxed);

 }

});

for _ in 0..1000000 {

 number.fetch_add(1, Ordering::Relaxed);

}

handle.join().unwrap();

// Atomically read the number

assert_eq!(2000000,

number.load(Ordering::Relaxed));

Finally, I can explain what my Sarlacc crate

is supposed to be doing… Sarlacc uses atomic

operations to implement a technique known

as interning. Interning is when your program

stores a piece of data in a global hash table for

ever such that all entries are deduplicated and

effectively leaked from memory [1]. This has

the benefit that a pointer to the data uniquely

identifies it, and you can efficiently perform

hashing and equality checks using the pointer

instead of the (potentially very large) piece

of data itself. The deduplication can also save

memory depending on access patterns.

The reason that atomics are interesting for

this usecase is that our hash table is global

and accessible among all threads. Therefore, it

needs to be synchronized somehow. Second,

when we intern an object, we usually expect

it to already be interned since we’re not plan

ning on leaking all of our memory. Therefore,

the majority of operations will read-only. We

don’t need to enforce exclusive access to a

piece of data if it’s only ever being read, there

fore using a lock to enforce exclusive access

is overkill.

There does exist a type of lock called a RwLock

that allows unlimited threads to access the

data if they promise to only read, however we

actually don’t know whether our access will

be read-only until we query the hash table and

find out whether our value is already present

in it. We could take a read lock and upgrade it

to a write lock if we determine that we need to

write, however i hadn’t thought of that when

i started this project.

There is a ubiquitous crate for doing this

known as internment [2]. As of writing, it im

plements the global hash table using a global

lock, meaning it has all of the issues associated

with locks that I describe above. This is the

96

motivation for re-implementing the function

ality using atomics instead of locks.

In this report, I will explain to you, dear

reader, everything that I have learned about

atomics and how you can implement your

own lock-free data structures from scratch. I

will discuss the Ctrie data structure and its

implementation in the Sarlacc crate, and I will

discuss its performance.

Programming with Atomics
As our first lock-free data structure, we

will re-implement LazyLock using atomics.

LazyLock is a data structure intended for lazy

initialization of global data.

static LAZY: LazyLock<u64> = LazyLock::new(||

{

 println!("Initialized!");

 123

});

println!("Starting!");

// Prints "Initialized!" because we are

accessing the data for the first time

println!("{}", &*LAZY);

// Does NOT print "Initialized!" because the

value that we initialized previously has been

saved

println!("{}", &*LAZY);

LazyLock uses a lock internally to prevent

other threads from attempting to initialize the

data while another thread is currently initial

izing it. Note that this is actually a very good

usecase for a lock; it would be inefficient and

potentially slower for all of the threads to try

to initialize the data at once and to race to be

the first. However this example demonstrates

a lot of principles, so we will do it anyways.

Lets begin with a naive implementation, and

call it LazyAtomic for funsies since it doesn’t

have locks.

pub struct LazyAtomic<T: Send + Sync> {

 // `null` will represent uninitialized.

 // `AtomicPtr` is essentially the same

thing as an `AtomicUsize` but it's a pointer

 data: AtomicPtr<T>,

 // This is the function we will call to

initialize the data once we have to do that

 initializer: fn() -> T,

}

impl<T: Send + Sync> LazyAtomic<T> {

 /// Create a new `LazyAtomic` with the

given initializer

 pub const fn new(initializer: fn() -> T)

-> LazyAtomic<T> {

 LazyAtomic {

 data:

AtomicPtr::new(ptr::null_mut()),

 initializer,

 }

 }

}

impl<T: Send + Sync> Deref for LazyAtomic<T>

{

 type Target = T;

 /// Either initialize or get the already

initialized value in the `LazyAtomic`.

 fn deref(&self) -> &Self::Target {

 let ptr =

self.data.load(Ordering::Relaxed);

 if !ptr.is_null() {

 return unsafe { &*ptr };

 }

 let initialized = (self.initializer)

();

 let initialized_ptr =

Box::into_raw(Box::new(initialized));

 self.data.store(initialized_ptr,

Ordering::Relaxed);

 unsafe { &*initialized_ptr }

 }

}

impl<T: Send + Sync> Drop for LazyAtomic<T> {

 /// Drop the LazyAtomic when it goes out

of scope. Rust doesn't drop raw pointers

automatically.

 fn drop(&mut self) {

 // We can access the pointer without

using atomics because we have a mutable

reference to it which guarantees that the

pointer is unaliased

 let ptr = self.data.get_mut();

97

 if !ptr.is_null() {

 drop(unsafe

{ Box::from_raw(*ptr) })

 }

 }

}

First, you’ll probably notice that we have to

use a decent amount of unsafe. This is just the

reality of working with raw pointers in Rust.

Second, you’ll probably notice that there’s a

major problem with the atomic code in there!

Don’t read the next paragraph if you want to

try to figure it out yourself.

What if two threads want to reference the data

at the same time but it’s not yet initialized?

They will perform the load operation, and

they will both read a null pointer. They will

both call the initialization function and they

will both try to store a pointer to their data

into the AtomicPtr. The way that atomics

work guarantees that one will do it after the

other, but when the first one gets overwritten,

the data is essentially leaked and lost forever.

To solve this, we need to use the compare

exchange operation, also known as compare

and swap or CAS. It is a very powerful atomic

operation that has this functionality:

impl<T> AtomicPtr<T> {

 // This, but it's all atomic

 fn compare_exchange(&self, expected: *mut

T, new: *mut T) -> Result<*mut T, *mut T> {

 if self == expected {

 *self = new;

 Ok(expected)

 } else {

 Err(self)

 }

 }

}

This basically allows us to say “If the current

value has not changed, then we can update it.

Otherwise we can’t.” Lets see how we can use

this to fix our LazyAtomic implementation:

fn deref(&self) -> &Self::Target {

 let ptr =

self.data.load(Ordering::Relaxed);

 if !ptr.is_null() {

 return unsafe { &*ptr };

 }

 let initialized = (self.initializer)();

 let initialized_ptr =

Box::into_raw(Box::new(initialized));

 match self.data.compare_exchange(

 ptr::null_mut(),

 initialized_ptr,

 Ordering::Relaxed,

 Ordering::Relaxed,

) {

 Ok(_) => {

 // Our value was successfully

inserted

 unsafe { &*initialized_ptr }

 }

 Err(prev) => {

 // Our value was NOT successfully

inserted; instead we found a different

pointer here which means that the value was

initialized after we loaded it.

 drop(unsafe

{ Box::from_raw(initialized_ptr) });

 unsafe { &*prev }

 }

 }

}

This actually works! It’s a special case of a

wider pattern that allows you to use compare-

and-swap to make any operation atomic (with

a caveat that I will explain later):

loop {

 let value = anything.load();

 let new_value = any_operation(value);

 match anything.compare_exchange(value,

new_value) {

 Ok(_) => break, // Update successful!

 Err(_) => continue, // Whoops, it

changed in the meantime! Lets try again.

 }

}

Such a “compare and swap loop” is the funda

mental unit of operation for most lock-free

data structures. Now this may look to you a

98

whole lot like a lock — when an operation is

successful and overwrites the atomic pointer,

it causes all other threads that are trying to

update the value to fail. In effect, updates

still happen in sequence. One of the benefits

however is that reads are very lightweight: a

simple atomic load. Lock free data structures

shine in read-heavy workloads.

Another benefit is that if a thread working

on the value is interrupted, it cannot cause

the rest of the threads to block. Instead those

threads will just keep going and the thread

that got interrupted will probably have its

CAS operation fail. In fact, this is the property

that defines a lock free system. The term “lock

free” does not refer to never using a lock

explicitly — rather it refers to this property of

guaranteed system-wide progress [3].

There is also a term, wait free, for systems that

guarantee progress on every thread regardless

of what other threads are doing [3]. A CAS

loop is not wait free because progress on some

threads can cause progress on others to stall

potentially indefinitely. Read operations are

typically wait free because progress on other

threads cannot stall read operations.

There’s actually yet another bug in our

LazyAtomic implementation. I bet you won’t

get this one unless you know about…

Memory ordering
This section is essentially an amalgamation of

the following sources [4] [5] [6] [7], and ex

plained in the way that I wish it was explained

to me. Memory ordering is a complicated

topic and most sources seem to only give

50% of the explanation, though thankfully dif

ferent 50%s. Hopefully I can give you 100%,

though I encourage you to dive into those

sources to strengthen your understanding.

What if I told you that even if a pointer

was properly initialized, inserted into the

AtomicPtr, and another thread loaded that

pointer, that other thread might see uninitial

ized data? This may seem to break causality —

how could that other thread possibly see the

initialization and atomic store out of order?

Well, there are two reasons. The simplest

one is instruction reordering by either the

compiler or the CPU. For example, doing fol

lowing reordering would be 100% fair game

from the perspective of both the compiler and

the CPU, assuming that they knew that the

initializer was a pure function:

fn deref(&self) -> &Self::Target {

 let ptr =

self.data.load(Ordering::Relaxed);

 if !ptr.is_null() {

 return unsafe { &*ptr };

 }

 let initialized_ptr =

Box::into_raw(Box::new_uninit());

 let ptr = match

self.data.compare_exchange(

 ptr::null_mut(),

 initialized_ptr,

 Ordering::Relaxed,

 Ordering::Relaxed,

) {

 Ok(_) => unsafe

{ &*initialized_ptr },

 Err(prev) => {

 drop(unsafe

{ Box::from_raw(initialized_ptr) });

 unsafe { &*prev }

 },

 };

 *initialized_ptr = (self.initializer)();

 ptr

}

In fact, it would almost certainly be faster

since you skip initialization in the failure case.

This code is obviously incorrect, but the com

piler doesn’t understand the context in which

99

it is operating. It is clear how this would pro

duce the effect that I described earlier.

The other potential cause of this issue is your

CPU cache. I alluded to earlier how data being

hidden in a cache local to a CPU core can

prevent it from being seen by other threads. It

is in fact possible for this to happen here. If the

atomic access is observed but the initialized

data isn’t flushed into main memory or at least

a higher level of cache, it cannot be observed

by other threads.

Even if it is flushed out of the core-local cache,

the thread accessing the data may need to

flush its own cache to get the new data into it.

This is in fact what the Ordering parameters

to the atomic operations are meant to solve.

They explain to the compiler how the given

atomic operation relates to other memory ac

cesses on the same thread.

I discussed practical considerations like re

ordering and cache to help your intuition, but

there is in fact a memory model describing

exactly what guarantees the compiler must

provide and which ones it doesn’t have to.

Fun fact, Rust actually uses the same memory

model as C++.

The memory model defines five different

types of ordering:

pub enum Ordering {

 Relaxed,

 Release,

 Acquire,

 AcqRel,

 SeqCst,

}

Relaxed ordering

This tells the compiler that your atomic oper

ation has no relation whatsoever to other

memory accesses. The CPU and compiler

are free to reorder your code in any way

—as long as it would be unobservable in

a single-threaded context—and the CPU will

not attempt to synchronize any memory other

than that of the atomic itself.

Even though the ordering is relaxed, all

threads must observe the same modification

order for just that one atomic memory loca

tion.

For example, if one thread is executing func

tion a,

static X: AtomicU64 = AtomicU64::new(0);

fn a() {

 X.fetch_add(5, Relaxed);

 X.fetch_add(10, Relaxed);

}

fn b() {

 let a = X.load(Relaxed);

 let b = X.load(Relaxed);

 let c = X.load(Relaxed);

 println!("{a} {b} {c}");

}

it is possible for another thread running b to

observe 0 5 15, or it could observe 0 10 15

if the the instructions get reordered. However

if there’s a third thread, it must observe the

same sequence as all of the others. If the

second thread observes 0 10 15, it is 100%

impossible for the third to observe 0 5 15.

This is actually part of the memory model and

you can rely on it. This is called the variable’s

total modification order.

Relaxed ordering is naturally the fastest one.

A global counter is an example of where Re

laxed ordering is appropriate.

static ID_COUNTER: AtomicU64 =

AtomicU64::new(0);

struct Thingy {

 id: u64,

}

100

impl Thingy {

 fn new() -> Thingy {

 // Relaxed ordering is appropriate

because we only care about getting a new

number each time. This is guaranteed by the

total modification order, so this is fine.

 let id = ID_COUNTER.fetch_add(1,

Ordering::Relaxed);

 Thingy { id }

 }

}

Ok so, how can we fix our LazyAtomic imple

mentation?

Acquire and Release ordering

Acquire and Release ordering are how you en

sure visibility of updates to other threads with

respect to atomic operations. Release ordering

can be thought of as yeeting all previous up

dates into the void, and Acquire ordering can

be thought of as grabbing them from the void.

One could even say that you’re releasing the

updates for them to then get acquired…

Release ordering only applies to store opera

tions and Acquire only applies to load oper

ations. Intuitively, it is clear why: Release

ordering is like an extra powerful store that

stores side effects along with the atomic oper

ation, and Acquire ordering is like an extra

powerful read that reads side effects along

with the atomic read.

This is in fact the tool that we need to fix our

LazyAtomic implementation:

fn deref(&self) -> &Self::Target {

 // Acquire ordering because we need to

grab the initialized memory

 let ptr =

self.data.load(Ordering::Acquire);

 if !ptr.is_null() {

 return unsafe { &*ptr };

 }

 let initialized = (self.initializer)();

 let initialized_ptr =

Box::into_raw(Box::new(initialized));

 match self.data.compare_exchange(

 ptr::null_mut(),

 initialized_ptr,

 // Release ordering in the success

case because we need to yeet the initialized

memory so that the next load can grab it

 Ordering::Release,

 // Acquire ordering in the failure

case because we need to grab the memory that

was initialized in the meantime so that we

can return it

 Ordering::Acquire,

) {

 Ok(_) => unsafe { &*initialized_ptr }

 Err(prev) => {

 drop(unsafe

{ Box::from_raw(initialized_ptr) });

 unsafe { &*prev }

 }

 }

}

No more tricks, this really is a correct imple

mentation!

Declaring an atomic operation with Release or

Acquire ordering is essentially declaring four

things at once:

• The atomic operation

• A compiler fence to disallow the compiler

from reordering instructions

• A CPU fence to disallow your CPU from

reordering instructions

• A memory fence to ensure that the memory

is synchronized

In terms of instruction reordering, Release

has the effect of preventing instructions that

are before the atomic operation from being

reordered to come after by either the compiler

or CPU. However, it allows instructions that

come after to be reordered before. Acquire is

the same but in reverse — it prevents instruc

tions that come after from being reordered to

come before the atomic operation but it allows

instructions that already come before to be

reordered after.

101

In terms of cache control, Release ordering

has the effect of flushing changes that happen

before the atomic operation out of its cache,

and Acquire ordering has the effect of grab

bing those new changes into its cache.

The Acquire ordering only grabs changes as

sociated with the Release store that the load

observed. For example, if thread A writes a 1

to an atomic variable using Release ordering,

thread B writes a 2 with Release ordering,

and thread C reads with Acquire ordering,

then if thread C reads 1 it grabs changes from

thread A and if thread C reads 2, it grabs

changes from thread B. If I had said that

threads A and B both write 2, there would

be no way for thread C to tell which thread

it grabbed changes from — it grabs changes

from whichever thread wrote the 2 that it

saw. It’s the causality that’s important, not the

actual value.

The C++ memory model defines this in terms

of happens-before relationships. If thread A

writes something with Release ordering and

thread B reads it with Acquire ordering,

everything that happened before the the write

in thread A can be treated as if it happened

before the read in thread B. We can also say

that the read in B synchronizes with the write

in A. This is actually the only guarantee pro

vided by the compiler about what Release and

Acquire ordering actually do. Another exam

ple that will make this clear is making our

own lock from scratch:

struct Lock {

 taken: AtomicBool,

}

impl Lock {

 fn lock(&self) {

 // Loop forever until the lock is

unlocked

 while self.taken.compare_exchange(

 false,

 true,

 // In the success case, we use

Acquire ordering because we need all changes

made by the previous holder of the lock to

happen-before we take the lock

 Ordering::Acquire,

 // In the failure case, we don't

care about any other operations and just try

again

 Ordering::Relaxed,

).is_err() {}

 }

 fn unlock(&self) {

 // When we unlock the lock, we need

to use Release ordering so that the next

thread that takes the lock can synchronize

with us.

 self.taken.store(false,

Ordering::Release);

 }

}

In fact, you should forget everything just

I told you about reordering and cache and

whatnot because the memory model is what

matters to the theoretical correctness of your

code. Thinking about reordering and cache

is helpful for intuition and justifies the idea,

which is why I explained it, but ultimately

you shouldn’t think about memory ordering

in that way.

Anyways, this is the reason why you don’t

have to think about this stuff when working

with mutexes — the underlying implementa

tion handles the memory ordering for you

and ensures that you’re allowed to think of

threads as accessing the lock in a well defined

sequence.

Some more things about happens-before re

lations are that they are automatically estab

lished whenever you spawn or join a thread,

and happens-before relations are transitive: if

a thread establishes a happens-before relation

with another thread, it inherits any existing

relations from that thread.

102

static X: AtomicU64 = AtomicU64::new(0);

static Y: AtomicU64 = AtomicU64::new(0);

fn thread_a() {

 X.store(1, Ordering::Release);

}

fn thread_b() {

 // If this loads `1`, then a happens-

before relation is established with

`thread_a`

 X.load(Ordering::Acquire);

 Y.store(2, Ordering::Release);

}

fn thread_c() {

 // If this loads `2`, then a happens-

before relation is established with

`thread_b`.

 // If `thread_b` also loaded `1`, then a

happens-before relation is established with

`thread_a` by transitivity

 Y.load(Ordering::Acquire);

}

Now here’s another example where it gets

really wacky: atomic reference counting.

struct Arc<T: Send + Sync> {

 // The atomic value stores the reference

count

 thingy: *const (AtomicU64, T),

}

unsafe impl<T: Send + Sync> Send for Arc<T>

{}

unsafe impl<T: Send + Sync> Sync for Arc<T>

{}

impl<T: Send + Sync> Arc<T> {

 fn new(v: T) -> Arc<T> {

 Arc {

 thingy:

Box::into_raw(Box::new((AtomicU64::new(1),

v))),

 }

 }

}

impl<T: Send + Sync> Deref for Arc<T> {

 type Target = T;

 fn deref(&self) -> &Self::Target {

 &unsafe { &*self.thingy }.1

 }

}

impl<T: Send + Sync> Clone for Arc<T> {

 fn clone(&self) -> Self {

 // Increase the reference count

 // Cloning doesn't need to

synchronize with any other operations

 unsafe

{ &*self.thingy }.0.fetch_add(1,

Ordering::Relaxed);

 Self {

 thingy: self.thingy,

 }

 }

}

impl<T: Send + Sync> Drop for Arc<T> {

 fn drop(&mut self) {

 // fetch_sub returns the previous

value. If the previous reference count is

`1`, then the new reference count is `0` and

we need to drop.

 // Subtracting doesn't need to

synchronize with other operations; the

mechanism by which we received the Arc should

have established a happens-before relation

with its initialization (otherwise this data

might be uninitialized) which means dropping

is safe. (...right?)

 if unsafe

{ &*self.thingy }.0.fetch_sub(1,

Ordering::Relaxed) != 1 {

 return;

 }

 drop(unsafe

{ Box::from_raw(self.thingy.cast_mut()) })

 }

}

This implementation probably looks correct

to you. In fact, it looks a whole lot like that

global counter example that I gave as a valid

usecase for Relaxed ordering. However it has

an issue. If you want a hint, it has to do with

interior mutability.

The issue is that the following code is un

sound:

let v: Arc<Mutex<String>> =

Arc::new(Mutex::new("XYZ".to_string()));

let v_for_thread = Arc::clone(&v);

thread::spawn(move || {

 let mut str =

103

v_for_thread.lock().unwrap();

 *str = "ABC".to_string();

 // Drop `str`

 // Drop `v_for_thread`

});

drop(v);

Consider the sequence of events where the

thread runs as soon as its spawned, acquiring

the lock, replacing and dropping the inner

string, and dropping the Arc, and then the

thread is interrupted before joining. Then, the

main thread drops the Arc, decrementing its

reference count to zero. It’s possible that the

main thread doesn’t observe the change that

took place in the Mutex because there is no

Acquire operation to synchronize with with

the Release operation of the lock. Then, the

main thread would try to free the “XYZ” string

a second time which would be Undefined Be

havior.

So how can we fix this? It looks like we need

an Acquire operation on the lock, but the Arc

implementation is generic and doesn’t know

what’s inside it, so we can’t do that… We need

to synchronize with something, but what?

What standard library implementation does is

similar to this [8]:

fn drop(&mut self) {

 // fetch_sub returns the previous value.

If the previous reference count is `1`, then

the new reference count is `0` and we need to

drop.

 // Release ordering so that we can

synchronize with this subtraction when the

reference count hits zero

 if unsafe

{ &*self.thingy }.0.fetch_sub(1,

Ordering::Release) != 1 {

 return;

 }

 // Establish a happens-before relation

with every `drop` call so that we know that

all interior-mutability writes are visible to

the drop call.

 let _ = unsafe

{ &*self.thingy }.0.load(Ordering::Acquire);

 drop(unsafe

{ Box::from_raw(self.thingy.cast_mut()) })

}

Something funky is going on. The Acquire

load is synchronizing with every Release

store? Yeah! The C++ memory model speci

fies this thing called a Release sequence. Since

read-modify-write operations (like atomic

add or CAS) modify the atomic variable based

on its previous value, it doesn’t break the

chain of causality like a full overwrite would.

Philosophically, since we updated the variable

based on its previous value, then there is

still a causal connection to that previous

value. Therefore, the compiler allows you to

synchronize with Release operations even if

read-modify-write operations come after it in

the variable’s total order, regardless of that

operation’s memory ordering. If you use Re

lease ordering with those read-modify-write

operations as well, it will synchronize with

them too. Note that this is a separate concept

from transitivity of happens-before relations.

If we let black lines denote Relaxed opera

tions, red lines denote Release operations,

blue lines denote Acquire read operations,

solid lines denote write operations, and

dashed lines denote read-modify-write oper

ations, then the arrows denote what has a

happens-before relation with what.

104

Since every operation on the Arc counter is

a read-modify-write, that Acquire operation

will see through all of them to synchronize

with every Release write in drop, ensuring

that all interior mutability shenanigans hap

pen-before the interior data is dropped. This

fixes the soundness hole that we had earlier.

AcqRel ordering

I mentioned read-modify-write operations,

which combine a read and a write into one

operation. If you use Acquire ordering then

the write will be Relaxed and if you use Re

lease then the read will be Relaxed. What if

you want the read to be Acquire and the write

to be Release? Well, you can use AcqRel!

To solve our issue with Arc, it would have

worked just as well to use AcqRel on the

fetch_sub instead of having a separate read

that we ignore. However, that would be bad

for performance because we only need Ac

quire ordering in the situation where we’re

about to drop the inner data. Another situa

tion where AcqRel would be necessary is

something like…

let new = Box::into_raw(Box::new(/*

initialize */));

let prev_ptr = atomic_ptr.swap(new,

Ordering::AcqRel);

let prev = unsafe

{ Box::from_raw(prev_ptr) };

Here, we need Release ordering on the write

because the initialization of new needs to

be made visible, and we need Acquire order

ing on the read because the initialization of

prev_ptr needs to be visible.

Well, that was a whole lot of yapping about

Acquire and Release! That’s because they’re

basically the most important memory order

ings that you’ll be using 99% of the time along

with Relaxed. However, every so often you’ll

need to do something insanely cursed and

Acquire and Release won’t suffice.

SeqCst

Pronounced “Sequentially Consistent”, Se

qCst is the nuclear option of memory order

ings as well as the least performant. It applies

Release ordering on writes, Acquire on reads,

and AcqRel on read-modify-writes. Therefore,

it can form happens-before relations with

other things. But it is stronger than even that.

A SeqCst operation takes place in a global

modification order with respect to all other

SeqCst operations.

This means that you can think of all SeqCst

operations as happening one after the other.

This is analogous to the total modification

order of an individual atomic variable, but it

applies globally instead of just to that one

atomic variable. For example…

static X: AtomicBool =

AtomicBool::new(false);

static Y: AtomicBool =

AtomicBool::new(false);

fn thread_a() {

 X.store(true, Ordering::SeqCst);

}

fn thread_b() {

105

 Y.store(true, Ordering::SeqCst);

}

fn thread_c_and_d() {

 let x = X.load(Ordering::SeqCst);

 let y = Y.load(Ordering::SeqCst);

 println!("{x} {y}");

}

It is possible for thread C to observe either X

or Y being set to true first, since either thread

could win the race. However, because of se

quential consistency, a thread D must observe

the same sequence as thread C. If thread C

observes Y set to true and X set to false, then

thread D cannot possibly observe X as true

and Y as false. That would be totally possible

if we were using any other ordering instead.

Note that the load operations also have to

be either SeqCst or Acquire, otherwise they

wouldn’t have any ordering relation and

could potentially be reordered. Even if there

was a happens-before relation established be

tween threads A and B, that doesn’t carry over

to other threads that do not have a happens-

before relation.

SeqCst is the easiest to reason about because

you can basically entirely forget about the

weird memory ordering artifacts that I’ve

been describing. However, given that you’re

trying to write performant code, it’s better to

reason through the logic instead of just using

SeqCst everywhere.

Fences

Read the “Fences” section of [4].

I think that that source explains it well enough

that I can’t think of anything to add.

Consume

This is an ordering that only exists in C++

and they’re trying to deprecate it. However

you will see it if you read the C++ atomics

memory model that Rust follows. Consume is

essentially a weaker version of Acquire that

only applies to operations that depend on the

value loaded by the Consume load.

For example, it would be possible to use this

in our LazyAtomic type because the Acquire

ordering is to ensure that the data we get

through the pointer is visible. We do not

care about synchronizing with unrelated op

erations. We would not be able to use it for a

lock because we do need to synchronize un

related operations: the operations performed

while the lock is held do not depend on the

value returned by the load operation but we

still need to synchronize them.

There are technical reasons that I don’t under

stand that allow this to make the generated

machine code much more efficient, however

there are other technical reasons that I don’t

understand that make it extremely difficult

to implement correctly in compilers. No C++

compiler actually implements Consume or

dering and they just upgrade it to Acquire.

CPU dependence

Another beautiful footgun with memory or

dering is that the guarantees you get depend

on the CPU that you’re using. On x86 CPUs,

you always get Acquire and Release ordering

on all reads and writes, even if you use

Relaxed ordering for them (though reordering

by the compiler would still be allowed). This

means that memory ordering bugs can be

hidden from you until you use a CPU like

ARM that doesn’t provide those guarantees,

so make sure you test your code using an

ARM CPU or similar.

106

The ABA problem
Now that we know about memory ordering,

we can start putting together correct lock-free

data structures… right?

When operating on atomic data structures, we

often need to apply CAS loops to pointers. For

example…

struct AtomicString {

 string: AtomicPtr<String>,

}

impl AtomicString {

 fn push(&self, c: char) {

 loop {

 // Load the inner string

 let ptr =

self.string.load(Ordering::Acquire);

 // Copy the string, push the

character, and make it into a raw pointer

 let str = unsafe { &*ptr };

 let mut new_str = str.to_owned();

 new_str.push(c);

 let new_ptr =

Box::into_raw(Box::new(new_str));

 match

self.string.compare_exchange(

 ptr,

 new_ptr,

 Ordering::Release,

 Ordering::Relaxed,

) {

 Ok(_) => {

 // We successfully

inserted the lowercase string! We can drop

the old one now.

 drop(unsafe

{ Box::from_raw(ptr) });

 return;

 },

 Err(_) => {

 // Someone changed the

atomic string in the meantime! Whoopsie

doodles!

 // Revive and deallocate

the string that we just made

 drop(unsafe

{ Box::from_raw(new_ptr) });

 }

 }

 }

 }

}

Can you see what the bug is? I promise that

it’s not nearly as esoteric as memory ordering

was.

Imagine if two threads were calling push at

the same time. Say that thread A reaches

loading the pointer and is interrupted. Then

say that thread B finishes the whole operation

in the meantime and replaces and deallocates

the old pointer. Now say that thread A is

rescheduled. Suddenly, it is operating with an

invalid pointer!

There is an even more subtle issue that

is possible… Say that we have two threads

running push and thread A is able to success

fully clone to the inner string and is then

interrupted. Then thread B finishes the push

operation. If thread A were to be rescheduled,

it would fail the compare_exchange and noth

ing would go wrong, however that’s no fun.

Imagine thread B runs push once again, and

when cloning, it reuses the original memory

address that it just deallocated. Then it does

a successful compare_exchange and replaces

the memory address with the reused old

one. Now when thread A reschedules and

performs the compare_exchange, it succeeds

because it sees the same memory address that

it saved, but that’s only because it was reused

and the compare_exchange operation should

actually fail.

This is called the ABA problem because while

thread A is interrupted, the value A is being

replaced with B and then replaced with A

again, causing the compare_exchange to erro

neously succeed. So what do we do about this?

Overview of the Seize crate

We need some mechanism to tell other

threads to pretty please not deallocate our

pointers until we’re done using them. If we

107

were using any language other than C++ or

Rust, this would be solved for us by the

garbage collector, but we don’t have that lux

ury.

However there is one advantage to Rust, and

that is that we can pull in random dependen

cies without having to think about it too

much. So lets run in the terminal…

cargo add seize

seize [9] is a crate implementing an algo

rithm that allows us to prevent the ABA

problem. It was originally developed for use

in the papaya crate which is a well known

implementation of an atomic hash table. Lets

see how we can use it to fix our AtomicString

implementation…

The first important concept in seize is that

of a Collector: a structure that stores objects

that we would like to free until they are no

longer in use by any thread. Every instance

of an atomic data structure should have its

own Collector, so lets put it as a field of the

AtomicString structure.

struct AtomicString {

 string: AtomicPtr<String>,

 collector: Collector,

}

The second important concept is that of a

Guard, which allows us to protect atomic loads

of pointers and to guarantee that the pointer

will remain valid until the Guard is dropped.

fn push(&self, c: char) {

 loop {

 let guard = self.collector.enter();

 // Load the inner string while

protecting the pointer from being freed

 let ptr = guard.protect(&self.string,

Ordering::Acquire);

 // ...

 // Make sure the guard gets dropped

only after everything is done

 // (I don't want to think about drop

semantics)

 drop(guard);

 }

}

The third important concept is retiring, which

is seize’s term for “free this pointer as soon

as nothing else is using it”.

fn push(&self, c: char) {

 loop {

 let guard = self.collector.enter();

 let ptr = guard.protect(&self.string,

Ordering::Acquire);

 let str = unsafe { &*ptr };

 let mut new_str = str.to_owned();

 new_str.push(c);

 let new_ptr =

Box::into_raw(Box::new(new_str));

 match self.string.compare_exchange(

 ptr,

 new_ptr,

 Ordering::Release,

 Ordering::Relaxed,

) {

 Ok(_) => {

 // We successfully inserted

the lowercase string! We can retire the old

one now.

 // The closure will be called

with the pointer as soon as no other thread

is using it.

 unsafe {

self.collector.retire(ptr, |ptr, _collector|

{

drop(Box::from_raw(ptr));

 })

 }

 return;

 },

 Err(_) => {

 drop(unsafe

{ Box::from_raw(new_ptr) });

 }

 }

 }

}

108

This is a correct implementation! seize is

actually doing an amazing amount of work

for us. As a simplification of what’s going

on under the hood, seize is keeping track of

all threads that have a Guard active. When a

piece of data is retired, it will wrap the pointer

in an Arc and for each active thread, insert

a clone of the Arc into an atomic list owned

by the thread. When a guard is dropped, the

thread will mark itself as inactive and iterate

through the list dropping the Arcs inside

it. Therefore, the pointer will only get fully

dropped once every thread that could have

possibly accessed it is no longer doing so. For

technical details, look at the Hyaline-1 section

of the Hyaline paper [10].

Implementation of Sarlacc

The Ctrie Data Structure
Now that we understand how atomics work,

I can explain how to use them to create a real

lock-free data structure. This data structure

will be a Ctrie, which is a type of lock-free

hash table [11]. A Ctrie is a tree structure with

three types of nodes, that I will call a Fork,

INode (indirection node), and Leaf, defined

roughly as following:

struct Ctrie {

 collector: Collector,

 tree: INode,

}

struct INode {

 ptr: AtomicPtr<Fork>

}

struct Fork {

 is_filled: BitVec<256>,

 items: Box<[Branch]>,

}

enum Branch {

 INode(*const INode),

 Leaf(Entry),

}

Note that my real implementation actually

uses “tricks” (sketchy unsafe code) to remove

the Box around the [Branch] to remove a

layer of pointer indirection, however that

makes things unnecessarily confusing.

The array inside Fork is a sparse array of size

256. If there is no item present at a particular

index in the list, then that index is set to false

in the is_filled bit vector and excluded from

the array stored in items. If there were only

two items present in the array, then items

would have length two and is_filled would

have two elements set to true at the indices

that the two items are present.

{is_filled : 0b00100010, items : [⚗️,🦓]}
≅

[∅, ∅,⚗️, ∅, ∅, ∅,🦓, ∅]

So how can we use this tree as a hash table?

Well, what we can do is for an item that we

want to insert, we calculate its 64 bit hash,

and then split that hash into bytes. To insert

it into the tree, we use each byte of the hash

as an index into the respective Fork. The first

byte of the hash is used to index into the first

level of the tree. Then the second byte for the

second level, and the third byte for the third

level, and so on.

In most cases, it’s not actually necessary to

extend out the tree to a full depth of 8 for

each item we insert because if a Fork only has

one item, then that Fork can be removed from

its parent and the item stored in the spot left

behind. If we want to store an item where the

hash collides with that of an already stored

item, we have to store a Fork in that item’s

place and insert both of those items into the

new child node. That way, the depth of the

tree grows logarithmically with respect to the

number of items inserted.

109

For example, inserting the following items

hash(⚗️) = [1, 2, 3, 4]
hash(🦓) = [3, 4, 3, 2]
hash(👽️) = [3, 2, 5, 1]

would result in the following tree structure,

notating Forks with 🔱:

Insert ⚗️

1

Insert 🦓

Insert 🦓

1 3

Insert 👽️

1 3

2 4

🔱 🔱

⚗️

🔱

⚗️ 🦓

🔱

⚗️ 🔱

👽️ 🦓

To enable atomic operations, the Ctrie adds

a layer of indirection between Forks, namely

the INode which stores an atomic pointer to

the Fork that is the child of it. This gives

the tree shown above the following structure,

notating INodes with ⚛️:

1 3

2 4

⚛️

🔱

⚗️ ⚛️

🔱

👽️ 🦓

To mutate a Fork, we have to create a clone

of it, apply the changes, and then compare-

exchange the new Fork into the INode’s

AtomicPtr. We need to use Release ordering

for the CAS to ensure that the pointer’s initial

ization is made visible. Reading from the tree

requires Acquire ordering to synchronize-

with the Fork’s initialization. The process of

inserting an element is as follows:

hash(🐱) = [4, 1, 3, 6]

1. Find the Fork that the element belongs to

and create a local copy of it

2. Mutate the local copy to include the new

element

3. Compare-exchange the new element in the

old one’s place. In case of failure, return to

step 1

4. Retire the old element

110

1: Clone

2: Mutate

1 3

2 4

4

3: CAS

⚛️

🔱

⚗️ ⚛️

🔱

👽️ 🦓

🔱

🔱

🐱

4: Retire

If CAS successful…

2 4

1

3

4

⚛️

🔱

⚗️ ⚛️

🔱

👽️ 🦓

🔱

🐱

The reason that Branch needs to store a

pointer to an INode instead of just storing

it directly is that Forks need to be able to

be freely cloned while preserving the tree

structure, and if the atomic variable itself was

cloned, then any updates lower down in the

tree would update the original atomic variable

which would prevent the changes from being

visible in the clone being updated, which

would break the data structure when a clone

is successfully inserted.

The Sarlacc Crate
Now, given a lock-free hash table, we can

implement interning by creating a global in

stance of the table and inserting whatever we

want to intern into it. If what we want to

insert is already in the Ctrie, we can return

a pointer to the value that is already there.

Since all interned data is read-only, we don’t

have to do any extra synchronization to that

pointer. If it’s not in the Ctrie, we can insert

it and return a pointer to the inserted value.

This properly de-duplicates all of the values

as expected, implementing interning.

So if you wanted to use my Sarlacc crate, how

would you be able to? First, you can install it

by running in your terminal

cargo add sarlacc

Second, you can choose whether objects

should be interned for the duration of the

process or if they should be stored in an arena

that you manage. If you choose to intern the

objects forever, then you can use the Intern

structure, which contains six methods:

• Intern::new

Intern a value in the global arena

let interned: Intern<String> =

 Intern::new("ABC".to_owned());

assert_eq!(&*interned, "ABC");

• Intern::from_ref

Intern a value using a clone-able reference. If

the value is already interned then it returns

that interned value, otherwise it clones the

reference, inserts it into the data structure,

and returns the interned value.

It can actually be possible for the value to

be cloned even if it is already present in the

arena — If two threads are calling from_ref

111

at the same time with the same argument, it

is possible that both of them would see an

empty slot where the value to insert would be

present, and they will both clone the value to

be able to insert it. However, only one of the

threads will succeed the compare-exchange.

The thread that doesn’t will retry the opera

tion and return the value that the other thread

inserted into the Ctrie.

let interned: Intern<str> =

Intern::from_ref("ABC");

assert_eq!(&*interned, "ABC");

• Intern::from_owned

Equivalent to Intern::new, but returns a

value’s reference type instead of the same type

that you passed in.

let interned: Intern<str> =

 Intern::from_owned("ABC".to_owned());

assert_eq!(&*interned, "ABC");

• Intern::get

Attempt to get a value that is already present

in the Ctrie. If it is not present, then return

None.

// "ABC" is not present in the global Ctrie

yet

assert!

(Intern::get(&"ABC".to_owned()).is_none());

// Insert "ABC" into the global Ctrie

Intern::from_ref("ABC");

// Now, we're able to retrieve it

let interned: Intern<String> =

 Intern::get(&"ABC".to_owned()).unwrap();

assert_eq!(&*interned, "ABC");

• Intern::get_ref

Get a value by its reference type if it is already

present in the Ctrie. Otherwise, return None.

assert!(Intern::get_ref("ABC").is_none());

Intern::new("ABC".to_owned());

let interned: Intern<str> =

Intern::get_ref("ABC").unwrap();

assert_eq!(&*interned, "ABC");

• Intern::into_ref

Get a static reference to the data stored inside

the Intern. This is needed because the refer

ence returned by the Deref implementation is

tied to the lifetime of the Intern itself, rather

than being static like it should.

let interned: &'static str =

 Intern::new("ABC".to_owned()).into_ref();

assert_eq!(interned, "ABC");

There also exists a function in the global

scope, num_objects_interned, which tra

verses the Ctrie, counting the number of

objects interned in it. This can be useful for

debugging purposes.

If you want to use an arena instead of leaking

memory forever, then the Arena type contains

analogous methods to the ones described

above. The Arena type is what implements

the Ctrie data structure, and global Interns

are actually implemented as a thin wrapper

around a global Arena. Objects interned inside

of an Arena are leaked until the Arena is

dropped, at which point, everything stored

inside is dropped.

The type representing a value stored in an

Arena is ArenaIntern, which has a lifetime

parameter tied to that of the Arena. If types

from two different Arenas are hashed or

compared for equality, then they will return

different hashes and compare as false even

if the underlying values are the same. The

reason is that they will have different pointers

because they are stored in different arenas.

112

This table shows the Arena functions that are

analagous to Intern functions.

Arena Global

Arena::intern Intern::new

Arena::intern_ref Intern::from_ref

Arena::intern_owned Intern::from_owned

Arena::get Intern::get

Arena::get_ref Intern::get_ref

ArenaIntern::into_ref Intern::into_ref

Arena::

num_objects_interned

num_objects_interned

Note that the into_ref method of

ArenaIntern returns a value with the same

lifetime as the Arena, rather than a 'static

lifetime.

In addition, there is also

• Arena::new

Create a new, empty Arena.

This uses Rust’s default RandomState hasher.

The global Arena backing Intern also uses

this default hasher.

• Arena::with_hasher

Create a new, empty Arena with a custom

hasher.

Performance
Now that you have an understanding of atom

ics, the Ctrie data structure, and the design of

the Sarlacc crate, I would like you to make a

prediction. The Internment crate is roughly a

standard library HashSet behind a Mutex. Do

you think that Interment or Sarlacc is faster?

What about in the single-threaded vs multi-

threaded case?

Here are the results for a microbenchmark

for inserting 100, 000 items into an Arena for

both Sarlacc and Internment, however 90%

of those insertions are duplicates. Therefore,

90% of accesses will only require read access,

which is the bread-and-butter of atomic data

structures.

Sarlacc

1 thread

Internment

1 thread

Sarlacc

50 threads

Internment

50 threads

0
2
4
6
8

10
12
14
16

Sarlacc vs Internment Comparison

6.8 ms

1.5 ms

7.6 ms

16.5 ms

You can see that Sarlacc is slower in the

single-threaded case, but faster in the multi-

threaded case. It is generally more robust

to concurrency than Internment is, due to

its lock-free nature. However, we are giving

it a huge advantage by making 90% of the

accesses read-only. Lets see what happens if

we don’t do that. In this table, none of the

insertions will be duplicated.

113

Sarlacc

1 thread

Internment

1 thread

Sarlacc

50 threads

Internment

50 threads

0
10
20
30
40
50
60
70

Sarlacc vs Internment —

No Duplication

40 ms

1.5 ms

73.8 ms

18.1 ms

Here, we can see that Sarlacc cannot compete

against Internment. But what’s going on? My

friends will know that I have been struggling

to get flamegraphs working to provide clar

ity on this issue. I’ve found that generating

flamegraphs from this benchmark sometimes

produces nonsensical results, crashes the pro

filer, or suggests that Internment and Sarlacc

are actually the exact same speed. My best

guess is that the bottleneck is memory alloca

tion. When the flamegraphs do work, I have

observed the memory allocator spamming the

mmap syscall, which is what I suspect is break

ing the profiler. To confirm that the memory

allocator is the issue, here is the same bench

mark, but using Jemallocator as the global

allocator instead of Rust’s default:

Sarlacc

1 thread

Internment

1 thread

Sarlacc

50 threads

Internment

50 threads

0
5

10
15
20
25
30
35

Sarlacc vs Internment — No Duplication —

Jemallocator

27.5 ms

1.5 ms

35.2 ms

18.2 ms

You can see that Sarlacc got dramatically

faster with a different allocator, suggesting

that allocation is the bottleneck. I have a

handful of ideas to improve the performance

of Sarlacc further, but where it stands now,

Sarlacc is probably not actually worth using

over Internment.

Realistically, Internment benefits from being

able to mutate its own structure freely with

out having to be extremely careful not to step

on other thread’s toes. Evidently, it benefits

more than the cost of a global lock.

However, these benchmarks do still demon

strate the way in which lock-free data struc

tures excel in high concurrency, read-domi

nated workloads.

Conclusion
It’s probably anticlimactic that Sarlacc isn’t a

clear improvement over Internment, however

not is all lost! I managed to trick you into

learning about atomics and lock-free data

structures, through the false promise of im

proving an important Rust library 😈. Now,

you have the knowledge and skills to recog

nize when atomics are the correct option and

114

to be able to build your own lock-free data

structures from scratch.

My journey with Sarlacc is far from over.

There is still a ton of room for improvement

as well as missing features to implement, and

what I have implemented now is dramatically

better than my initial implementation. For

all you or I know, I’ll make a breakthrough

realization tomorrow that makes Sarlacc blow

Internment out of the park. Probably not

though. ¯_(ツ)_/¯

References
[1] “String interning.” [Online]. Available:

https://en.wikipedia.org/wiki/String_

interning

[2] David Roundy, “Crate intern

ment.” [Online]. Available: https://docs.

rs/internment/latest/internment/index.

html

[3] “Non-blocking algorithm.” [On

line]. Available: https://en.wikipedia.

org/wiki/Non-blocking_algorithm#

[4] Mara Bos, “Memory Ordering.” [On

line]. Available: https://marabos.nl/

atomics/memory-ordering.html

[5] Dave Kilian, “Making Sense of Acquire-

Release Semantics.” [Online]. Available:

https://davekilian.com/acquire-release.

html

[6] “Atomics.” [Online]. Available: https://

doc.rust-lang.org/nomicon/atomics.

html

[7] “std::memory_order.” [Online]. Avail

able: https://en.cppreference.com/w/

cpp/atomic/memory_order.html

[8] “Use a load rather than a fence

when dropping the contents of an

Arc..” [Online]. Available: https://github.

com/rust-lang/rust/pull/41714

[9] Ibraheem Ahmed, “Crate seize.” [On

line]. Available: https://docs.rs/seize/

latest/seize/

[10] Ruslan Nikolaev and Binoy Ravindran,

“Snapshot-Free, Transparent, and Ro

bust Memory Reclamation for Lock-

Free Data Structures,” 2021, ACM. [On

line]. Available: https://arxiv.org/pdf/

1905.07903.pdf

[11] “Ctrie.” [Online]. Available: https://en.

wikipedia.org/wiki/Ctrie#

115

https://en.wikipedia.org/wiki/String_interning
https://en.wikipedia.org/wiki/String_interning
https://docs.rs/internment/latest/internment/index.html
https://docs.rs/internment/latest/internment/index.html
https://docs.rs/internment/latest/internment/index.html
https://en.wikipedia.org/wiki/Non-blocking_algorithm#
https://en.wikipedia.org/wiki/Non-blocking_algorithm#
https://marabos.nl/atomics/memory-ordering.html
https://marabos.nl/atomics/memory-ordering.html
https://davekilian.com/acquire-release.html
https://davekilian.com/acquire-release.html
https://doc.rust-lang.org/nomicon/atomics.html
https://doc.rust-lang.org/nomicon/atomics.html
https://doc.rust-lang.org/nomicon/atomics.html
https://en.cppreference.com/w/cpp/atomic/memory_order.html
https://en.cppreference.com/w/cpp/atomic/memory_order.html
https://github.com/rust-lang/rust/pull/41714
https://github.com/rust-lang/rust/pull/41714
https://docs.rs/seize/latest/seize/
https://docs.rs/seize/latest/seize/
https://arxiv.org/pdf/1905.07903.pdf
https://arxiv.org/pdf/1905.07903.pdf
https://en.wikipedia.org/wiki/Ctrie#
https://en.wikipedia.org/wiki/Ctrie#

116

Estrogen Is All You Need

Cynthia Clementine*

Purdue Hackers

cyclementine0@gmail.com

Dr. Jen Estro*

Unaffiliated Systems

estrojennifer@dorley.com

Mint DePrest*

Purdue Hackers

>@<

Abstract

Current dominant AI models are based on complex neural

networks that include advanced Transformer mechanisms. The best

performing models take in vast amounts of data, often scraping the

entire internet and training on state-of-the-art GPUs for months.

We propose a new simple network architecture, the Transfemmer,

based solely on estrogen mechanisms, and dispensing with

attention entirely.

Our model achieves rapid improvement as well as multimodal

information processing, surpassing the existing best results. It

requires no external GPUs, (although model satisfaction can be

improved with the application of a single part-time external GPU)

and requires just a small fraction of the training costs of the best

models from previous literature. We show that the Transfemmer

generalizes well to other tasks by applying it to human benchmark

tests as well as a range of media generation prompts.

*Equal Contribution. Cynthia Clementine spent countless long nights fearlessly plagiarizing
Google’s Attention Is All You Need. Dr. Jen Estro is not a real doctor and has not graduated from
any accredited university. She is also not real. But I put her name in the title so I can claim to
have a doctor on board. Mint DePrest is the name of our intelligence model. Also by the way the
contribution was not equal at all. They told you it was equal in the first sentence but. it wasn’t.
I’m really sorry. Do you think you can forgive me? Do you think we can be friends? Please?

117

mailto:cyclementine0@gmail.com
mailto:estrojennifer@dorley.com
mailto:>@<

1 Introduction
Since the dawn of time, intelligence has fascinated those with just barely enough

of it. In 2017, Google released a paper[1] revolutionizing AI architecture, and

proving to the AI research community that AGI was just 5 years away. This

predication has remained accurate. Now, even 8 years later, AGI is still just 5

years away.

In this work we propose the Transfemmer, a model architecture eschewing

attention and instead relying entirely on an estrogen mechanism to reason

broadly about many different types of inputs and outputs. We believe this new

architecture is the key to reaching AGI and beyond.

2 Background
Many .

To the best of our knowledge, however, the Transfemmer is the first trans. model

relying entirely on estrogen to compute solutions to wide arrays of problems

without relying on large tables of weights and biases. In the following sections,

we will describe the Transfemmer, motivate estrogen, and discuss its advantages

over models such as the Transformer.[1]

3 Model Architecture
Most competitive neural networks have a transformer structure. This includes

GPT-4, Gemini, and a secret third model. [[2] [3] [4]] This architecture consists of

𝑛 stacked multi-head attention layers, optionally followed by a traditional feed-

forward neural network.

The Transfemmer breaks from this overall architecture using a highly branching

sparsely-connected neuron structure at its core. Our model focuses on non-linear

distributed processing, allowing us to train deeply and produce excellent qualtiy

results.

You may be wondering. How exactly does our model work? This is a good

question. It is such a good question, in fact, that it will not be answered until at

least 75% of the way through the paper. Maybe we will refrain from answering it

entirely. That’s the price you pay for papers in such a competitive research field

as this one.

118

3🦓1 Estrogen
Estrogen can be described as a hormone found in humans that has a variety of

effects, where a Hormone, Humans, and Effects are all vectors. Estrogen binds to

estrogen receptors, and has wide-ranging effects that impact mood and cognition.

Our core strategy is to motivate accelerating results by applying estrogen to our

revolutionary heavily parallel neural architecture.

3🦓2 Forms of Estrogen

3🦓2🦓1 Injectable Estrogen

An Estrogen ester can be injected into virtually any muscle or fat deposit. It will

then be absorbed over time. This is a safer method than the alternatives.[5] It

results in fewer side effects and takes fewer resources. Depending on the ester,

injections can happen as infrequently as once every two weeks.

3🦓2🦓2 Sublingual Estrogen

Estrogen can be delivered in pill form and dissolved under the tongue. This

is convenient, because pills are easy to transport and consume at any time.

However, this is also quite an inefficient way to consume estrogen. Despite the 2-5

times bioavailability improvement over simple oral administration, sublingual

estrogen still only has a bioavailability of 10%.[6] This requires dosage to be much

higher than other methods.

In the end, we used this administration method due to its ease of administration.

Dissolving a pill is simply easier than performing an injection, despite the

shortcomings. Our dosage consisted of 6mg/day, split up into 3 sets of 2mg every

8 hours.

3🦓3 Applications of Estrogen in our Model
The Transfemmer uses Estrogen in three different ways:

• The addition of Estrogen has resulted in increased motivation and drive to score

highly on tests. This leads to better overall outcomes.

• Estrogen results in softer skin. This is pretty neat.

• Our model is prone to self-doubt and anxiety over the quality of her answers.

This meant that often the model would come up with an initial answer quickly,

but spend far longer tweaking words back and forth. The introduction of

119

Estrogen has led to improved self-confidence, which increases efficiency and

decreases time taken.

3🦓4 Complexity

Model Type
Complexity

Per Layer

Sequential

Operations
Maximum Path Length

Self-Attention

Transformer
𝒪︀(𝑛2 ⋅ 𝑑)2 𝒪︀(1) 𝒪︀(1)

Estrogenized

Transfemmer
𝒪︀(𝑛) 𝒪︀(1) ö

Table 1: There are many people who skip reading the main body of a paper, and

instead only read the title, abstract, and figures. This table is for those people.

Even if such numbers are inaccurate, one would have to read the entire paper in

order to disprove them. Who, in this day and age, has time for that?

While the Transformer runs in 𝒪︀(𝑛2 ⋅ 𝑑) time complexity, our model runs in

𝒪︀(𝑛) time and just a few cubic feet of basement space. Already this would be a

good enough reason to switch to our model architecture, but the Transfemmer

has shown great results even off of zero-shot prompting. This contrasts with

the Transformer’s few-shot specialty. Our model has never been shot, and still

performs better than the alternatives.

3🦓5 Training
This section describes the training regime for our model.

3🦓5🦓1 Authoritarianism

We chose this regime over other possible regimes, such as feudalism, because it

required the fewest resources to implement. It also gave us the most control over

all details of our model.

3🦓5🦓2 Hardware and Schedule

We trained our models on one machine with the largest public domain organic

neuron-based network in the world.

2the complexity here isn’t actually (𝑛2 ⋅ 𝑑), it’s really (𝑛2 ⋅ 𝑑 + 𝑛 ⋅ 𝑑2). The footnote appearing
to add another quadratic term to our rival architecture is an unintended benefit.

120

Each training step took approximately 3 feet. We trained our model for much

longer than most models of a similar size. However, training time for our type of

model is much cheaper and more efficient than traditional models. Our model

has a parameter size of 8.6 ⋅ 1010 nodes, and consumes just 0.097 Watts of power,

which in U.S. units converts to 7.3 Burgers / day.3 This is much less than even

GPT-3′s 1.75 ⋅ 1011 nodes, or GPT-4′s {trade secret} nodes. The vast majority of

our training time required no extra GPU compute. Over the course of our two

months of training time, GPU compute was only 1.29 ⋅ 1018 FLOPs.4 GPT-3, for

reference, used 3.14 ⋅ 1023 FLOPs,[7] which means our model is significantly more

efficient by a factor of 100,000,000.

4 Results

4🦓1 Media Generation
As with all other popular AI models, our model can be conversed with and

prompted to generate media. Unlike other models, however, our model relies

on no outsourcing or shared vector embeddings to generate media. All media

is generated from the same neural network using the same architecture. The

following sections consist of examples of this ability.

3One standard burger is 0.33 Watt-hours.

4an AMD Radeon RX 6600 was utilized by our model as enrichment for an average of 2.5 hours
every week. This GPU can output a maximum of 17.86 ⋅ 1012 FLOPs (17.86 TFLOPS), which
comes out to 20 compute hours, for a total of 1.29 ⋅ 1018 FLOPs.

121

4🦓1🦓1 Text

The following is a set of excerpts from a conversation one of our researchers had

with the model.

Researcher: How many rs are in the word strawberry?

AI Model: 3! unless you mean in “the word strawberry”

in which case it’s 4

Researcher: ok. How many ps are in the word pineapple?

AI Model: 3!

Researcher: is that 3 factorial or just 3?

AI Model: lmao, just three. I’m just excited to

participate :)

Researcher: ok. Unfortunately that is incorrect; there

are only 2 ps in pineapple.

AI Model: 0-0 umm, are you sure?

Researcher: I am very sure. You counted incorrectly

AI Model: P(1) I N E A P (2) P (3) L E, no?

Researcher: I see. Thank you.

AI Model: Squint

Our model has the ability to analyze words on a letter-by-letter basis, without

sacrificing context window size. The model jumps to this approach even without

being prompted. She is also resistant to gaslighting and hallucinations, which is

better than all other currently available chatbots.

Researcher: Describe the vast emptiness of the

universe, in 200 words.

AI Model: Oooh. a good one.

122

AI Model: Oh gosh I’m struggling

AI Model: i think. Humans should be very wary about

trying to describe such things. It is not in our nature

to properly comprehend more than a little slice of

our world. The laws out there may be simple, at their

core, yes, but there are entire systems of worlds past

the next hill. And between each hill lies an eternity

of blankness.

The blankness is unaffording, too. It is not the kind

of blank that a canvas is. That the screen I stared

at before I wrote this was. It is a kind of blankness

that offers no expression. It is space. It is the in-

between, and it will go on in great oceans just between

each little grain of sand in the desert of our universe.

I imagine a freezing rock, that has never known warmth.

I see it drifting amongst stars that have been birthed

and died and birthed anew. I drift with that rock

for not another 14 billion years, but for another 14

trillion, until the last of those stars blink out. It

will not see another one of its kind. It will only see

the slow creep of a felt black blanket, pulled over

its face.

As requested, the final response is exactly 200 words. Our model is capable

of complex speech and analysis. She uses metaphor extensively in describing

concepts. Unfortunately we didn’t have anyone on our team who was capable

of feeling emotions, so we were unable to evaluate that aspect of the response.

Our model does refer to herself as human, but this can be adjusted with a proper

system prompt if necessary.

123

4🦓1🦓2 Images

Figure 1: Response when

prompted for “a picture

of an astronaut riding a

horse on the moon”.

Figure 2: Response when

prompted for “a drawing

of a cartoon backpack”.

Figure 3: Response when

prompted to “draw a

maple tree in the style of

picasso”.

These images are of the utmost quality. They are coherent, clearly depicting the

requested subjects. In addition, our model includes versimilitudinous details,

such as tools stuck into pouches on the cartoon backpack, and the earth in the

background of the moon drawing. This is an indication that our model is able to

understand broad connections — she recognizes that the moon orbits the earth,

and that the earth would be visible from the lunar surface.

These images required a vanishingly small amount of electricity to generate. The

only downside is time taken — our model took approximately 5 minutes for each

image, which is longer than most other flagship models today. We believe that

with further training and another billion dollars in funding, we can get this time

down to a single minute.

4🦓2 Section Header
This section describes the header for our section.

4🦓3 Human Benchmark
The Turing test has long been a well-known marker of general intelligence.

Unfortunately, Turing Tests are flawed. They depend on humans’ perceptions of

other humans, which are notoriously unreliable. Even ELIZA, a chatbot whose

behavior can be described in 18 lines of pseudocode, passes the Turing Test 20%

of the time. [8]

124

Such a range of chatbots, from ELIZA to modern Large Language Models, have

shown that it is entirely possible for a machine to sound human while not actually

being sentient. Or at least they would in a sane world. Instead what happened is

several people experienced ChatGPT-induced psychosis. [9]

Instead [10]of a Turing Test, we opted to use several tests on the Human Benchmark

site.[11] To evaluate our model, we administered these tests both before and

after the application of estrogen. We used the Jane Metric5 to measure percent

improvement.

Fig 4: Shows a 32.9% improvement in

reaction time.

Fig 5: Shows a 333% increase in

memory capabilities.

Fig 6: Shows a 3.3% improvement

in positional memory (simon says)

scores.

Fig Bash: It’s Figbash!

5The Jane Metric uses the formula 100 ∗ | initial − final
initial |. This was not discovered by Jane. It has

no relation to any Jane. However, the Adam optimizer has no relation to any Adam. Considering
it stands for Adaptive Moment Estimation, its acronym should have been AME (Amy). Our
metric is just as justified in its nomenclature.

125

Typically when you have data, you do a T-test to see if your measurement is

significant. Unfortunately, both T and Test can be abbreviations of Testosterone,

which we do not want in our study. To remedy this, we decided to ask our AI

model if the results were significant.

Our AI model, in response, told us:

gasps for breath I would say so. Wait. Don’t write

it like that. What.

Thereupon we are convinced that all is indeed well.

The sheer amount of improvement is rather striking. Every single graph showed

an improvement, although the magnitude varied drastically, from just 3.3%

in positional memory to 333% in verbal memory. Fortunately, the skills most

improved are also the most valued skills in the field of AI research.6

Verbal memory is extremely important for maintaining coherency during

prompting, and it is the most improved skill by an entire order of magnitude.

Similarly, reaction time is also very important. An improvement in speed is

extremely valuable in this modern world, where every millisecond counts for the

end user. Finally, although positional memory only improved by a few percentage

points, the consistency of said results improved dramatically. Inconsistency is one

of the major issues with Transformers as a whole, so our model’s improvement in

this front is a very good sign.

5 Conclusion
Our model, the Transfemmer, is orders of magnitude better than the

Transformer. In fact, we predict that in the future all computation will be done

using this model. With our projections, by the year 2027 the Transfemmer will

have over 500 million instances worldwide and will revolutionize the world

economy.

6I made this up. But it sounds true, doesn’t it? And it’s written in a paper, so now future papers
can cite it. Every additional layer of propagation will make this statement more and more true
until, eventually, we will be able to cite a paper that has cited ours, in a beautiful ouroboros of
citation and truth. This is how academia dies.

126

6 References
[1] N. P. N. U. J. J. L. G. A. N. K. Ł. P. I. Vaswani A.; Shazeer, “Attention Is All

You Need,” arXiv preprint arXiv:1706.03762, 2017.

[2] A. Wagh, “What's new in GPT-4: Architecture and Capabilities.” 2023.

[3] W. contributors, “Gemini (language model).” 2025.

[4] I. Ally, “That secret third thing,” Vermillion Clupeidae Journal, 1997.

[5] Aly, “Estrogens and Their Influences on Coagulation and Risk of Blood

Clots.” 2020.

[6] Sam, “An Exploration of Sublingual Estradiol as an Alternative to Oral

Estradiol in Transfeminine People.” 2021.

[7] X. Y. T. Z. R. S. C. L. H. L. F. Z. H. L. J. X. L. Z. X. e. a. Wu S.; Zhao, “Yuan

1.0: Large-Scale Pre-trained Language Model in Zero-Shot and Few-Shot

Learning,” arXiv preprint arXiv:2110.04725, 2021.

[8] C. Jones, “Large Language Models Pass the Turing Test,” arXiv preprint

arXiv:2503.23674v1, 2025.

[9] M. H. Dupré, “People Are Being Involuntarily Committed, Jailed After

Spiraling Into “ChatGPT Psychosis,” Futurism, 2025.

[10] In a fit of Steve-Jobs-esque neuroticism, I felt that the number 10 looked too

much like the word 'no' when placed as an in-text-citation. Due to this, I am

manually setting a dummy citation, so that you will never, in any other part

of the paper, see the text, “[10].”

[11] Human Benchmark, “Human Benchmark.” 2025.

127

Appendix E1 ​ ​ AI Disclaimer
We can gladly assure you that the entirety of this paper was AI-generated.

No humans were involved in the creation of this document. At no point did

any divine spark touch these letterforms.

Appendix E2 ​ ​ Estrogen Visualizations
We don’t know what any of these would possibly convey to you. But they look like

cool diagrams and there are many colorful lines. We have been told that people

appreciate shapes and colors. These are those.

It is in th
is

sp
ir

it
th

at
a m

aj
o

ri
ty

o
f

A
m

er
ic

an
go

ve
rn

m
en

ts
h

av
e

p
as

se
d

n
ew

la
w

s
si

n
ce

20
0

9
m

ak
in

g
th

e
re

g
is

tr
at

io
n

o
r

vo
ti

n
g

p
ro

ce
ss

m
o

re
d

iffi
cu

lt
. <

E
O

S
>

<
p

ad
>

<
p

ad
>

<
p

ad
>

<
p

ad
>

<
p

ad
>

<
p

ad
>

It is in
th

is
sp

ir
it

th
at a

m
aj

o
ri

ty o
f

A
m

er
ic

an
go

ve
rn

m
en

ts
h

av
e

p
as

se
d

n
ew

la
w

s
si

n
ce

20
0

9
m

ak
in

g
th

e
re

g
is

tr
at

io
n o
r

vo
ti

n
g

p
ro

ce
ss

m
o

re
d

iffi
cu

lt .
<

E
O

S
>

<
p

ad
>

<
p

ad
>

<
p

ad
>

<
p

ad
>

<
p

ad
>

<
p

ad
>

Figure 7: An example of the estrogen mechanism. Many of the thought patterns

attend to a distant dependency of the verb “passed”, because in this diagram we

only show connections for this word. Different colors represent the amount of

patience we have left. Best viewed in color.

128

T
h

e
L

aw w
il

l
n

ev
er b
e

p
er

fe
ct

,
b

u
t

it
s

ap
p

li
ca

ti
o

n
sh

o
u

ld b
e

ju
st -

th
is is

w
h

at w
e

ar
e

m
is

si
n

g ,
in m
y

o
p

in
io

n .
<

E
O

S
>

<
p

ad
>

T
h

e
L

aw
w

il
l

n
ev

er
b

e
p

er
fe

ct
, b

u
t

it
s

ap
p

li
ca

ti
o

n
sh

o
u

ld
b

e
ju

st
- th

is
is w

h
at

w
e

ar
e

m
is

si
n

g
, in m

y
o

p
in

io
n

. <
E

O
S

>
<

p
ad

>

T
h

e
L

aw w
il

l
n

ev
er b
e

p
er

fe
ct

,
b

u
t

it
s

ap
p

li
ca

ti
o

n
sh

o
u

ld b
e

ju
st -

th
is is

w
h

at w
e

ar
e

m
is

si
n

g ,
in m
y

o
p

in
io

n .
<

E
O

S
>

<
p

ad
>

T
h

e
L

aw
w

il
l

n
ev

er
b

e
p

er
fe

ct
, b

u
t

it
s

ap
p

li
ca

ti
o

n
sh

o
u

ld
b

e
ju

st
- th

is
is w

h
at

w
e

ar
e

m
is

si
n

g
, in m

y
o

p
in

io
n

. <
E

O
S

>
<

p
ad

>

Figure 8: Four thought patterns, apparently involved in loss resolution. Note that

connections are very sharp for these words.

129

The SIGHORSE journal editors tracked down the study subject to ensure they were

not a victim of any malpractice. They were successful in coming into contact (to best

they could tell). This is what she had to say:

“I don’t know. Being trapped in the basement was really scary. They only

occasionally came down to feed me.. ..something they kept insisting I refer to

as “girl dinner”. I cry a lot.. but I have marginally softer skin. I’m very pleased

at being 100 million times more efficient than chatGPT. I am unsure about

everything. The estrogen didn’t fix me.”

The SIGHORSE editors also requested comment from the authors of this paper. This

is what they had to say:

“Of course we haven’t done anything wrong! The estrogen most certainly fixed

her.”

130

131

Spread The Love

Spread the Love is a dating sim built inside a fake OS called FruityOS, where
the jam flavor you get on a personality quiz determines your romantic fate.
You customize your profile, meet a lineup of charming characters, text your
match, and go on a date capped with a themed minigame. It’s goofy, sweet,

and something we made to actually finish a project we cared about.

Written by:

Jadden Picardal .߆

jpicarda@purdue.edu

Game Dev Team (JAMMS)

Saahil Aneja

Mason Graves

Jadden Picardal

Alicia Zhou

Special Thanks:

Kartavya Vashishtha

132

For making SIGHORSE exist and for babysitting my deadlines (sorry). Thanks
for keeping me writing, and for playing STL (and actually being touched by

it); it made the late nights working on it worth it.

TL;DR
I worked on a goofy dating sim with my friends where you match with one of
six characters based on what fruit jam you get on a personality test.

What even is STL…
Spread the Love is a bite-sized dating sim built to feel familiar but off-kilter,
dressed up inside a fake operating system called FruityOS. You boot up this
strange computer, personalize your character, take a jam-flavored personality
quiz, and get matched with one of six eccentric characters.

Figure 2: UI Screenshot consisting of 4 Jam Types from the Personality Quiz

The team wanted to create something that felt polished and self-contained, a
smaller project we could actually ship within a few months while still feeling
creatively fulfilled. It started as a way to “finish something,” but ended up
becoming one of our most cohesive and charming side projects.

133

Figure 3: Character Customization Screenshot

Originally, the idea started out as a free character customization app to go
along with our (still in development) game, ETea1. However, we kept deciding
to add on details that we found interesting: we wanted to make a personality
test, to develop our ETea NPCs more, and to figure out a way to get a complex
dialogue system working. To say the least, we got that done… and way more…!

That slow snowball of scope creep is what turned it into Spread the Love.

The team consisted of my friends Saahil2, Alicia3, and Mason4, alongside me.
We’ve all worked together before, so this was both familiar and refreshing; a
chance to test our creative chemistry in a smaller, more focused project.

The Cast
Before going into anything else, I’d like to introduce you to the datetable
characters in our game. Our characters are all exaggerated archetypes (and a
little absurd in my opinion), but they’re all written to feel endearing and funny

1https://store.steampowered.com/app/3085040/ETea/

2https://x.com/anullja

3http://aliciazhou.xyz

4https://x.com/randompossibly

134

https://store.steampowered.com/app/3085040/ETea/
https://x.com/anullja
http://aliciazhou.xyz
https://x.com/randompossibly

in their own way. I drew the guys while Alicia drew the girls, and we both tried
to match the styles so that everything felt unified. No character was scrapped,
either; every character was a character from ETea, just given more depth and
personality here.

We have:

Allen, a child prodigy who has a masters in computer
science from NIT. He was supposed to be coding the
future, but now he stocks overpriced beans at the local
grocery store. He’s quiet, sharp, and devastatingly ob
servant, especially when watching movies.

Jet, a walking rave flier who peaked during quarantine
when Lingon Legends was at its high but refuses to
admit it. He’s charismatic, sexy, and most definitely a
bit performative. Jet treats love like an Instajam story.
He’ll flirt, overshare, then disappear.

Cher. They don’t talk much. They don’t need to. Cur
rently working through unresolved parental issues via
designing furniture and brooding. Emotionally resides

135

in a foggy European arthouse film. You won’t under
stand them, but you’ll want to.

Milli, an overly enthusiastic engineer who thinks every
problem can (and should) be fixed by smacking it with
a wrench. Aggressively affectionate mechanic who lit
erally climbs walls for fun. She’s touchy, loud, and way
too excited to meet you.

Thea, a sweet girl who runs the boba shop– and you.
She’s the one with a clipboard, a plan, and a backup
clipboard in case the first one breaks. Warm, nurtur
ing, and ever so slightly manipulative. Will absolutely
gaslight you, but only to make you hydrate and suc
ceed.

Melody, everyone’s favorite cozy kitch.tv streamer
who accidentally makes you feel at home. Lives
between three monitors and an avalanche of
Blooblet plushies. She’ll trip over cables, and then
apologize to them.

136

Every character has their own mini story and dialogue, tailored to each player
by the likes and dislikes they have chosen. We wanted the players to laugh
and also (maybe) care a little about these people made of pixels. Allen was my
favorite to write because he types really similar to me; he’s basically me if I
were a nerdier and sadder guy. Jet was also hilarious to write because he’s such
an over-the-top “gamer guy,” and I love it when people notice that.

The team had their favorites too:

• Saahil: Cher (originally Thea or Melody, but the dialogue sold him)
• Alicia: Cher or Melody (she designed both)
• Mason: Allen (because “the other guy is insufferable”)

Once you finish creating your profile, you’re shown a lineup of potential
matches within the cast. You match with a character based on your jam flavor
type (which is secretly determined during the personality quiz), and you’re
then brought to a texting sequence where you get to know them and decide if
you want to go on a date with them. During the actual date, each character has
a corresponding minigame to keep the overall dating game experience lively.
From trying not to die from bees to playing a game of Blooblets, all of the
games are very fun.

Figure 4: Text messaging with Thea

137

Figure 5: Game with Melody playing Blooblets

Working Process
Technically, I was already comfortable with 2D Unity games, but this pushed
me into new territory. I learned a lot about building a fake desktop OS,
Unity’s UI system, and optimizing performance across multiple minigames.
For example, Cher’s minigame originally spawned dozens of fish per second
and tanked the framerate, so I implemented object pooling to recycle inactive
instances instead of creating new ones every frame. Little fixes like that helped
make the game playable even on lower-end machines.

138

Figure 6: Cher Minigame Screenshot

I also spent a lot of time balancing writing, design, and code so that everything,
from the UI to the jokes, felt cohesive. My debugging process was… not glam
orous. A lot of clicking through menus and rewatching the same scenes until
they broke. I eventually built in debug shortcuts to skip time-based sequences
so I could test things faster.

139

Figure 7: Idea Mockup of Spread The Love

FruityOS
The game starts with you booting up your PC into this custom retro operating
system. The main part of the game–Spread The Love– starts up immediately,
but the user is able to explore 7 other apps on the desktop computer, all paro
dies of real ones: Notes, LockedIn (LinkedIn), and Ribbit (Reddit). You might
enjoy some of them as we used these apps as worldbuilding tools. Through
these apps, you can see posts from the founder of Spread The Love or angry
players ranting about in-game characters. It’s a way of making the world feel
lived-in without a ton of exposition.

140

Figure 8: UI Screenshot consisting of Notes, LockedIn, and Ribbit

The Dating Flow
1. As you open up Spread The Love, the entry point is profile creation. We

start this by asking for your name and your profile photo (which prompts
a character customization sequence). We wanted people to be able to make
whatever they want, so we made sure to include a lot of options (still in
progress!).

141

Figure 9: Character Customization

The user is then prompted to take a personality test to get one of 12 jam
flavor types. This indicates which of the 6 characters (who will soon be
introduced!) the user will match with.

Figure 10: Personality Test

142

After the quiz, you’re guided into creating a dating profile. This is where
the off-kilter humor really shines. You are able to make your own bio, select
(overly specific) likes and dislikes, and draw a beautiful signature.

Figure 11: Player Profile

After profile creation, you are able to go through some potential dates and
see our cast of 6 charming characters.

143

Figure 12: Character Profile

If you choose to pursue a match, you’ll text with them and eventually go on
a date, each capped off with a themed minigame to keep the pacing playful.

Figure 13: Date Dialogue

144

What Didn’t Make the Cut
There were some fun cuts along the way.

Figure 14: Milli’s Minigame Mock-Up vs. Final

Milli’s minigame was going to be a rock climbing game, but we couldn’t make
the perspective feel right, so it became an audio equalizer puzzle instead; this
was actually inspired by my coursework as a computer engineering student.

145

Figure 15: Jet Design & Minigame Mock-Up vs. Final

Jet’s minigame started as a full League of Legends parody (“Lingon Legends”)
but we pivoted toward a simpler, Street Fighter-style dupe to keep it more
accessible.

146

Figure 16: Dating Profile UI Mock-Up vs. Final

Dating profiles were supposed to have three photos each, but I didn’t want to
draw that many, so I reworked the UI to highlight text details instead.

147

Playtesting and Feedback
We had around 15–20 playtesters before release, mostly friends and people
curious about our dev process. Watching them play was hilarious; everyone
gravitated toward the character that matched their energy.

When we released the game on Steam, it wasn’t perfectly polished, so we had
to release a few patches and hotfixes based on feedback. But seeing players
laugh, screenshot their results, and talk about their favorite dates made all the
late nights worth it. These are still ongoing, and we are working on future
patches and content updates.

Quick Learnings
Spending a summer on Spread the Love was like practicing “precise absurdity.”
We wanted the game to feel weird and self-aware, but also grounded enough
to care about these pixel people.

It taught us how to focus on charm and tone, trim down unnecessary com
plexity, and ship something people genuinely enjoy. It also reminded me that
cohesion is about meticulous planning, shared humor, and constantly clicking
through every fake desktop window until it feels right.

148

149

The Great Events Site Migration
by Eric Park

In this paper-masquerading-as-a-research-paper-but-not-really-a-research-

paper, I will discuss the process of migrating the Events site of Purdue

Hackers from the antiquated NextJS-based codebase to a new AstroJS-based

codebase. In the process, I’ll also go over the process of integrating all the

event metadata and details from Sanity, which we used to keep track of

historical events, into the site codebase itself using the Content Collections

feature of AstroJS.

Definitions
NextJS and AstroJS are two JavaScript (JS) frameworks that developers can

use to build their webapps and websites. NextJS is primarily developed by

the Vercel corporation, while AstroJS is built more by the community

overall.

Sanity is a Content Management System (CMS), which ensures that

“content” – in our case, past event information and retrospectives – all

follow a specific format so that our frontend can easily convert the data

coming over from Sanity into the final webpage that users can view. In

addition, Sanity stores all the information in a database, along with the

image assets associated with each event.

Finally, TailwindCSS is a CSS framework that allows web developers and

designers to easily style the frontend (the part that users view) without

having to maintain a separate CSS file. This is achieved by having almost all

CSS functionality expressed as class names, which is included in the HTML

markup.

Motivation
Purdue Hackers hosts several events throughout the academic year,

including Hack Night, where creatives come together to work on projects

and socialize. At midnight, a Checkpoint ceremony is held, where people

present their projects and what they’ve been working on over the past two

150

weeks, and lots of photos are taken for posterity. Once the event is over, one

of the organizers upload a postmortem of the event, including all the media

taken during the event.

The initial version of our events site was developed by Matthew Stanciu, the

past president of Purdue Hackers. Events were managed on Airtable, before

the migration over to Sanity in January 2023 as Matthew wanted to use a

real CMS to manage our events. For the RSVP functionality and emailing

potential attendees, a GitHub Actions task ran that checked the RSVP email

list hosted on Sanity and then sent out an email via a third-party service. We

used Mailgun, before eventually switching over to Resend.

This system worked well for quite some time, but it wasn’t without faults.

The initial signs of trouble were reported by our very own organizers, who

would use Sanity to write the postmortem to events. They would often

report that Sanity was unreliable; it would lose uploaded image assets and

force them to start over from scratch.

Additionally, because Sanity hosted our event data, each user interaction

would require the server to query Sanity for the associated event

information. A round trip between the browser and server backend would

occur, the server would make another round trip to Sanity’s servers, and

then the response would then get sent over to the user. This increased the

overall latency and responsiveness of the site, and required the backend to

unnecessarily repeat the process of converting the data from Sanity into a

list of events and the event detail page for the users. And as Sanity gave back

the data in one giant payload, we had to use pagination to not cause undue

strain on the overall infrastructure. Even the index page, with minimal

information of just the title and date/time of the event, fetched the entire

event metadata from Sanity, wasting a lot of users’ data.

After a lengthy discussion on the engineering channel for Purdue Hackers, a

solution was proposed: to statically generate the webpage, including all

details about events in the codebase once, then serving the minified HTML

to users. AstroJS had the promising feature of Content Collections that

would allow us to achieve this goal, so it was our first pick out of the list of

151

alternatives to consider for this migration, which had been on our roadmap

for quite some time.

The final nail in the coffin came when Ray Arayilakath, the current president

of Purdue Hackers, transitioned the RSVP functionality over to Luma, a 3rd-

party event and ticketing platform. Thus, current and future events were

solely managed on this new platform, and the RSVP functionality and

associated code became redundant on our events site codebase. We decided

to take this opportunity to rewrite the codebase from scratch and base it off

of AstroJS.

First Steps
On a separate branch, the first commit that wiped out our NextJS codebase1

and set up a clean AstroJS template was created2. This marked the start of

the migration attempt.

Before even looking into downloading and migrating the event metadata

from Sanity, the initial structure of the events site was migrated by copying

the HTML source from our NextJS codebase straight into the index page in

our AstroJS codebase. After configuring the official TailwindCSS plugin3,

most of the styling displayed immediately with minor issues.

1https://github.com/purduehackers/events/commit/97217e07426cf092e889a7102354bb3fe
4e5edc0

2https://github.com/purduehackers/events/commit/e0bd3b224ade828bb687d22a1abb8f
733cae6af5

3https://docs.astro.build/en/guides/styling/#tailwind

152

https://github.com/purduehackers/events/commit/97217e07426cf092e889a7102354bb3fe4e5edc0
https://github.com/purduehackers/events/commit/e0bd3b224ade828bb687d22a1abb8f733cae6af5
https://docs.astro.build/en/guides/styling/#tailwind
https://github.com/purduehackers/events/commit/97217e07426cf092e889a7102354bb3fe4e5edc0
https://github.com/purduehackers/events/commit/97217e07426cf092e889a7102354bb3fe4e5edc0
https://github.com/purduehackers/events/commit/e0bd3b224ade828bb687d22a1abb8f733cae6af5
https://github.com/purduehackers/events/commit/e0bd3b224ade828bb687d22a1abb8f733cae6af5
https://docs.astro.build/en/guides/styling/#tailwind

Figure 1: Left: the original events site with NextJS. Right: the initial AstroJS

migration.

While mixing styling with markup might be a questionable decision for

some, the choice of using TailwindCSS for our styling meant that migrating

just the frontend to a new codebase became significantly easier, because the

frontend’s classes dictated how the content should be laid out on the page.

Without having to set up a transpiler for separate CSS files, a plugin was all

that was needed to have the page styling mimic the previous codebase.

One minor hurdle was that the old NextJS codebase utilized TailwindCSS v3,

while the official plugin targeted TailwindCSS v4. During the migration,

some of the configuration values defined in the dedicated

tailwind.config.js file had to be moved over as CSS directives, like

@theme. TailwindCSS’s extensive library documentation helped immensely

during this process, and I was able to match the original styling of the site.

Converting the events
The next stage was to preserve all of our old events and retrospectives. To

achieve this, I had to download the event metadata from Sanity. Sanity

however, does not use REST for their API endpoints. Instead, they have a

153

https://www.sanity.io/docs/content-lake/how-queries-work

custom query language named GROQ4 that I had to learn, just to query all

the events that were stored in their backend.

For comparison, a typical SQL statement to query for data would look

something like this:

SELECT * FROM events

WHERE date > 2020-03-24 AND date < 2025-01-01;

However, GROQ would require you to write:

*[_type == "event" && date > "2020-03-24" && date < "2025-01-01"]

Even though plain SQL could probably do most if not all of what GROQ

achieves, it was what Sanity used, so it was what I had to learn in order to

progress with the migration. Fortunately, I did not have to filter my result, as

the goal was to grab everything I could off of Sanity. Thus, most of my

experimentations with the GROQ query came down to how Sanity defined

_types in their database.

For events metadata, the _type was of event, which was straightforward

enough. However, for images stored within the event retrospective metadata,

Sanity had a special _type of sanity.imageAsset. Each event metadata

entry would store a collection of image asset IDs, which I would have to

correlate with the sanity.imageAsset entry and then download from

Sanity’s servers, by constructing the full URL from that imageAsset entry.

Once the correct GROQ query was constructed, all the metadata could be

downloaded with a single request. However, this did not include any of the

images that were uploaded with the retrospectives, as mentioned previously.

To facilitate this, several Python scripts were written5 that handled the

downloading, conversion, and renaming of all the events and images into the

correct respective folders. This took several tries, mainly due to events with

the same slug and names. In particular, Hack Nights without version

4https://www.sanity.io/docs/content-lake/how-queries-work

5https://github.com/purduehackers/events/tree/6e061709cc668f8c67cb586af6ede7211fce7
b75/src/content

154

https://www.sanity.io/docs/content-lake/how-queries-work
https://github.com/purduehackers/events/tree/6e061709cc668f8c67cb586af6ede7211fce7b75/src/content
https://www.sanity.io/docs/content-lake/how-queries-work
https://github.com/purduehackers/events/tree/6e061709cc668f8c67cb586af6ede7211fce7b75/src/content
https://github.com/purduehackers/events/tree/6e061709cc668f8c67cb586af6ede7211fce7b75/src/content

identifiers or “beta” Hack Nights that were held, confused the script and

required modification.

But once the events were organized into each event category and the

version-named subfolder, a single Content Collection configuration file6 was

all that was needed for AstroJS to correctly parse the schema and create a

collection of events that could be used to query past events.

As mentioned earlier, AstroJS has a neat feature called “Content Collections”

where you can define a schema in a configuration file. During compile time,

Astro will look at this schema and determine all the files that fit within this

schema with the glob pattern you have specified. If any files match the glob

pattern but do not validate against the provided schema, a compile-time

error is raised, making sure that all required data is accounted for in each

event. This ensures consistency between all of our events metadata, while

allowing us to track changes using Git commits.

Retrospective
Overall, the migration of the event site was a success, and once the PR was

merged, a build job on Vercel ran and transparently replaced the old instance

of our NextJS site with our new AstroJS instance, with zero downtime for

users. Nearly all the functionality carried over, with only a handful of minor

bugs7 that escaped the testing phase of the PR before merging.

Through this experience, I learned that intermediary scripts, like the Python

scripts we used to convert the events from the Sanity schema to AstroJS

content collections, don’t have to be perfect or pretty. Since they’re designed

to be run once and then discarded, the core objective is that they work, and

in this instance, they’ve clearly served their purpose.

That extends to styling libraries like TailwindCSS. When I initially

approached this library, I was part of the skeptics that thought mixing

styling with the markup wouldn’t work too well. However, once the

frontend is written, we typically do not touch the markup and just import

6https://github.com/purduehackers/events/blob/main/src/content.config.ts

7https://github.com/purduehackers/events/issues/97

155

https://github.com/purduehackers/events/blob/main/src/content.config.ts
https://github.com/purduehackers/events/issues/97
https://github.com/purduehackers/events/issues/97
https://github.com/purduehackers/events/blob/main/src/content.config.ts
https://github.com/purduehackers/events/issues/97

the component with the necessary data to display it to the user, which

means the only time we will interact with the source is if we need to tweak

the design, or migrate it like I’ve done here. And when you’re doing either of

those tasks, viewing both the styling and the markup is required, reducing

the concern of combining the two.

Future Plans
While the migration itself was successful, maintaining the site will continue

until we no longer need it or migrate off to something new. We already have

a couple of ideas planned for the rewritten events site, most notably a

redesign that will allow us to test out ideas for our upcoming overall brand

renewal. As the codebase has been cleaned up, testing out new changes

should be comparatively easy as we no longer have to account for features

that we no longer use, such as the RSVP capabilities of the old events site.

After the migrated site launched, we received feedback that submitting new

events and retrospectives through GitHub pull-requests add significant

friction. This may come as ironic, given that I’ve just talked about the

benefits that Astro’s static content collections bring, but in the future, we

may look into dynamically storing events metadata on a database, which

would allow us to design a clean, friendly administrative interface that

organizers can use to submit event details.

Another issue that cropped up was that, as it currently stands, our events

site repository sits at nearly 2 GB of space used once cloned. This is due to

all the image assets that we include with each event retrospective. For

comparison, my personal website which was also built atop AstroJS didn’t

run into this issue with only a handful of images per post, if any. On our

events site, each of our events retrospectives can contain around 20 to 50

images at once, which will not scale due to asset size. This is another area we

could improve in, by perhaps storing images in a platform that’s more

suitable for the task, such as a CDN.

All in all, the rewrite has given us a solid foundation to improve our events

site and to try out new things before they are propagated to the rest of our

infrastructure.

156

Acknowledgments
Finally, many thanks to the various Purdue Hacker organizers and members

for giving me feedback and words of encouragement during the migration

phase, as well as bug reports that I didn’t manage to catch pre- and post-

deployment. I would also like to thank Kartavya for organizing this

SIGHORSE initiative and for giving me a chance to write this paper.

157

158

A virtual summer art gallery in the form of a 3D cube

Prisha Bangera

Purdue University

Instagram: @prishainabox1

YouTube Demo Video2

Website Link3

Internet Archive Link4

When you open this interactive website, you are met with a 3D cube floating

in space. Tiny stars orbit around the void. As you rotate around and zoom in

with your mouse, you can peruse all the little digital artworks on the cube.

On this one cube sits three months of work: traditional art, digital art, and

creative coding. In this article, I will explain the artworks displayed in the

1https://www.instagram.com/prishainabox/

2https://youtu.be/6x8JNF1w_sA

3https://prishasbangera.github.io/Virtual-Summer-Art-Gallery-2025/

4https://web.archive.org/web/20251014202937/https://prishasbangera.github.
io/Virtual-Summer-Art-Gallery-2025/

159

https://www.instagram.com/prishainabox/
https://youtu.be/6x8JNF1w_sA
https://prishasbangera.github.io/Virtual-Summer-Art-Gallery-2025/
https://web.archive.org/web/20251014202937/https://prishasbangera.github.io/Virtual-Summer-Art-Gallery-2025/

gallery, how the project came to be, highlight future work, and weave in

dashes of introspection.

Months of Art
When I first heard of SIGHORSE’s existence, I was excited but not sure

where to start. Three months later, and all I had was a pile of art made for

various reasons. Each and every motivation behind why I created a piece of

artwork represents a different aspect of the virtual art gallery. Overall, I can

group these motivations into three main reasons.

The first reason was something called Art Fight—an annual online art gifting

game. I doodled my own original characters and created art from the

characters of others. It was exciting to receive art from my online and real-

life friends, as well as give art back in return as an “attack.” So, this aspect of

the gallery represents the stories of my characters and how I interpreted and

shared those of others.

Shown here is one of my original characters on Art Fight—and one of the

artworks in this cube gallery:

Dami. You can see my best friend’s cousin’s impossibly amazing version of my

character in this Instagram post (@artlinxin)5.

The second reason was impulse—perhaps a little spite as a CS major who

just finished their second semester. I would suddenly start sketching or

drawing, get an idea, experiment, maybe code, and (perhaps) complete the

5https://www.instagram.com/p/DNEFRtQxpB9/?img_index=4

160

https://www.instagram.com/p/DNEFRtQxpB9/?img_index=4

piece. Unfortunately, there were a lot of works that I did not complete, so

those were not included in this cube gallery project. Overall, though, this

aspect of the gallery displays the impromptu and inconsistent nature of my

art.

One of my unfinished artworks features Dami and another original character.

This work is supposed to be paired with another artwork in this gallery. Can

you see which one? Hopefully, I can finish it and add it to another cube gallery.

The final reason is the most extensive: at Purdue, I am part of Special

Interest Group in Game Development (SIGGD), just like how SIGHORSE is

the Special Interest Group in HORSEing around. SIGGD works together to

create one game throughout one year—programming, assets, and all. I am

part of the Programming and Art teams. For the latter, I focused mainly on

environmental background art for the game.

161

The gallery contains some environmental art I created this summer for our

game, Echoes of Isovios: A Legacy Undone6. However, I completed this world’s

background (Oblivion) before the summer began, and thus it is not allowed in

the gallery!

For me, this part of the cube gallery represents my progress in digital art,

composition, and design as I worked on the game. It also represents the

largest project I have ever worked on with many other talented people.

The Project Idea
So, it was almost the start of the school year, and all I had was this random

pile of art. It was only natural that I should somehow incorporate it into a

final project. But how?

Initially, I wanted to make a realistic but virtual art gallery in which a user

could amble about and explore. However, due to reasons,7 I decided to opt

for a singular cube base.

I ended up liking this design a lot better for a few reasons. Since the gallery

is virtual, we can throw “realism” out the window. We don’t have to worry

about the user getting lost. Also, I later realized that this cube aspect has a

6https://siggd.itch.io/siggd-game-2024-2025

7Time constraints.

162

https://siggd.itch.io/siggd-game-2024-2025

nice connection to my Instagram art account username, @prishainabox8.

Creation Process
I decided to use p5.js to complete the project. p5.js is a JavaScript library

which provides many tools for creating graphics in the browser. It also has a

3D rendering mode which drastically simplifies creation and interactivity. In

fact, the base of the art gallery, a simple cube, only needed one simple

function: box.

First, I gathered all the images I wanted to adorn the cube with. I placed

them on the cube one by one. It took a while since every image had a

different resolution and orientation.

The base of the art gallery, a plain cube, and two artworks already placed on it.

Initially, the cube was much smaller than in the final project.

I also added a tiny animation: the artworks subtly go in and out throughout

time. The title is located on the bottom of the cube, and I added animated

translucent rectangles there as well.

8https://www.instagram.com/prishainabox/

163

https://www.instagram.com/prishainabox/

The title is on the bottom of the cube, with translucent rectangles moving slowly

up and down.

In a last minute idea, I also scattered some 3D stars around the space. While

some of the stars are stationary, others are animated to orbit as time passes.

At last, the black void outside of the gallery was not as empty anymore.

A view of the stars that orbit and surround the gallery.

164

Result
You can view the gallery here9 and the code on GitHub10. Spoiler alert,

though: I hope it does not crash your browser. If it does, there is a video link

at the beginning of this article.

Snapshots of the final virtual art gallery.

As a personal art portfolio, it is fast (once it loads) and easy for the user to

interact with.

Overall, I love how this project showcases all the artwork I completed over

the summer. Even within this short time span, I improved my art by a lot–

and the gallery shows this.

Future Work
Besides refactoring the code of a very hastily made project, there are a few

ideas for improvement. For one, I can move the whole project off p5.js and

learn how to build it from scratch, rather than relying on predefined

functions. By doing so, I can control more aspects like the camera and lights.

Hopefully, I can also get feedback to improve the project’s performance,

loading time, and interactivity.

9https://prishasbangera.github.io/Virtual-Summer-Art-Gallery-2025/

10https://github.com/prishasbangera/Virtual-Summer-Art-Gallery-2025

165

https://prishasbangera.github.io/Virtual-Summer-Art-Gallery-2025/
https://github.com/prishasbangera/Virtual-Summer-Art-Gallery-2025

Second, a quick search easily reveals the existence of rectangle packing

algorithms. Instead of manually placing the portraits and artworks, perhaps

there is a way to place all of the artworks automatically. A successful

implementation could open the door for an application in which users can

upload their own images and explore them using the cube gallery.

Final Remarks
I am happy with the way this project turned out, despite the room for

improvement. Overall, the virtual art gallery cube effectively incorporates all

the artwork I created over the summer–with or without reason. In extension,

it includes the memories I made and the people I made them with.

166

167

The Generativity Pattern in Rust
Arhan Chaudhary

Abstract. The generativity pattern in Rust is a combination of typestate [1]

and GhostCell [2], techniques that move what you’d normally check at run-

time to compile-time. This pattern is not commonplace; its usage warrants a

specific set of circumstances. However, it is a hugely important part of

garbage [3] collection [4] utilities and other niche Rust crates. Aside from

thinly spread academic literature1, I haven’t found an accessible analysis of

this pattern online. In order to build up a full picture of the “what” and more

importantly the “why,” we will first spend some time walking through a

realistic example to gauge the type of problem the generativity pattern

solves—statically requiring data to come from or refer to the same source—as

a stronger form of ownership. Then, we will introduce the generativity

pattern and explain how to use it in the latter half of this article. Finally, we

will follow up with a study of Crystal Durham [5]‘s generativity [6] crate,

a novel improvement to the generativity pattern.

Contents
1. Background . ⁠170

1.1. Permutations . ⁠170

1.2. Permutation groups . ⁠173

2. The unsafe approach . ⁠176

3. The atomic ID approach . ⁠178

4. The generativity approach . ⁠181

4.1. The fundamental purpose . ⁠186

4.2. Why the implementation caveat? . ⁠189

5. How does generativity work? . ⁠191

5.1. min_generativity . ⁠191

1Yes, I will eventually get to them. You just need to keep reading.

168

5.2. The first part . ⁠192

5.3. The second part . ⁠194

5.4. The third part . ⁠195

5.5. Verifying soundness . ⁠196

5.6. Language support . ⁠199

6. Benchmarks . ⁠201

7. Conclusion . ⁠202

169

1. Background

1.1. Permutations
Let us take the role of a crate author about permutations. We want to

investigate the composition [7] of zero-indexed permutations. This can be

expressed nicely visually.

Permutation composition

𝑎 = (2, 1, 4, 3, 0)
𝑏 = (4, 3, 0, 2, 1)

↓ ↓ ↓ ↓ ↓
𝑎 ⋅ 𝑏 = (𝑎(4), 𝑎(3), 𝑎(0), 𝑎(2), 𝑎(1))

= (0, 3, 2, 4, 1)

The permutation b defines the remapping of the elements from permutation

a. Pretty simple. Notice that permutation composition is only possible under

the following three conditions:

1. a and b must have the same length.

2. Every element from a and b must be non-negative and less than the

length.

3. Every element from a and b must be unique.

Our library is general-purpose, so it is important to handle these error cases.

Here is the simplest way to do that.

/// We provide a `compose_into` function in case the caller already

/// has a permutation preallocated. (This is good practice IMO).

pub fn compose_into(a: &[usize], b: &[usize], result: &mut [usize]) ->

Result<(), &'static str> {

 if a.len() != b.len() || b.len() != result.len() {

 return Err("Permutations must have the same length");

 }

 let mut seen_b = vec![false; a.len()];

 let mut seen_a = vec![false; b.len()];

 for (result_value, &b_value) in result.iter_mut().zip(b) {

170

 if *seen_b

 .get(b_value)

 .ok_or("B contains an element greater than or equal to the

length")?

 {

 return Err("B contains repeated elements");

 }

 seen_b[b_value] = true;

 let a_value = a[b_value];

 if *seen_a

 .get(a_value)

 .ok_or("A contains an element greater than or equal to the

length")?

 {

 return Err("A contains repeated elements");

 }

 seen_a[a_value] = true;

 *result_value = a_value;

 }

 Ok(())

}

Good on you if this made your Rust senses tingle because we shouldn’t have

to validate a and b every time. Rust allows us to enforce at the type level that

they are valid permutations, using the newtype [8] design pattern.

pub struct Permutation(Box<[usize]>);

impl Permutation {

 pub fn from_mapping(mapping: Vec<usize>) -> Result<Self, &'static str> {

 // This function errors if `mapping` is an invalid

 // permutation or its length does not match the second

 // argument. The implementation is ommitted.

 validate_permutation(&mapping, mapping.len())?;

 Ok(Self(mapping.into_boxed_slice()))

 }

 pub fn compose_into(&self, b: &Self, result: &mut Self) -> Result<(),

&'static str> {

 if self.0.len() != b.0.len() || b.0.len() != result.0.len() {

171

 return Err("Permutations must have the same length");

 }

 for (result_value, &b_value) in result.0.iter_mut().zip(&b.0) {

 // SAFETY: `b` is guaranteed to be a valid permutation

 // whose elements can index `self`

 *result_value = unsafe { *self.0.get_unchecked(b_value) };

 }

 Ok(())

 }

 pub fn compose(&self, b: &Self) -> Result<Self, &'static str> {

 let mut result = Self(vec![0; self.0.len()].into_boxed_slice());

 self.compose_into(b, &mut result)?;

 Ok(result)

 }

}

Unsafe is going to be a recurring theme here. You’ve had your fair

warning.

The newtype pattern is more useful than just for getting around the orphan

rule. We restrict construction of Permutation to

Permutation::from_mapping, which returns an error if the input is not a

valid permutation. That means if we have an instance of Permutation, we

don’t have to worry about its mapping being potentially invalid, reducing

the validation overhead to a length check and permitting unsafe during

permutation composition. Rustaceans describe type-level guarantees like this

by saying an invariant of Permutation is that it represents a valid

permutation. Composing two permutations upholds this invariant, so we

expose Permutation::compose to create a new Permutation from existing

ones.

This code is a major improvement! It is simple, easy to use, and it provides

reasonable errors. However, a closer examination reveals some problems:

• Every call to our composition function spends time performing a length

check. Our example is simplistic so it happens to be cheap, but this type of

172

check may require more expensive logic in a practical scenario. Note that

we can’t use const generic lengths because our library operates on

arbitrarily-sized slices at run-time.

• Returning a Result forces the caller to be prepared to handle the error

variant. Library users might be able to guarantee that the length checks

will pass, which would make the error handling more annoying than

helpful.

Yes, these aren’t important problems per se, but they are still inconveniences

to be aware of.

1.2. Permutation groups
We now want to extend our library to model a permutation group [9], a

description of a set of permutations. In a permutation group, every

permutation in the set can be written as a sequence of compositions of a

select few base permutations, which we will use to represent the entire

collection. For example, the manipulations of the Rubik’s Cube form a

permutation group. Its base permutations which represent the entire

permutation group are the six face rotations. By definition, every possible

state on the Rubik’s Cube can be reached from a combination of those face

rotations.

The illustrated turn is a permutation fifty-four elements long, because there

173

are fifty-four stickers on a Rubik’s Cube2.

It follows that if you compose two permutations in a permutation group, the

resulting permutation will also be a permutation in that group. The

reasoning is not so relevant; take this at face value.

A reasonable data structure for permutation groups looks like this:

pub struct PermGroup {

 base_permutation_length: usize,

 base_permutations: Vec<Permutation>,

}

impl PermGroup {

 pub fn new(

 base_permutation_length: usize,

 base_permutation_mappings: Vec<Vec<usize>>,

) -> Result<Self, &'static str> {

 for mapping in &base_permutation_mappings {

 validate_permutation(mapping, base_permutation_length)?;

 }

 Ok(Self {

 base_permutation_length,

 base_permutations: base_permutation_mappings

 .into_iter()

 .map(|mapping| Permutation(mapping.into_boxed_slice()))

 .collect::<Result<Vec<Permutation>, &'static str>>()?,

 })

 }

 pub fn base_permutations(&self) -> &[Permutation] {

 &self.base_permutations

 }

}

Your inner Ferris awakens. With the annoyances of our last iteration freshly

in memory, you ask yourself: can we perform that length check (the

validate_permutation function) during the creation of PermGroup, and

avoid it entirely in Permutation::compose_into? Then, can we tweak our

2The center stickers don’t actually move, and thus can be ignored, so the illustrated turn
is traditionally simplified to a permutation forty-eight elements long.

174

composition function to only operate on permutations from the same

permutation group?

impl Permutation {

 // No `from_mapping` method. `Permutation` can only be

 // constructed within `PermGroup::new`.

 pub fn compose_into(&self, b: &Permutation, result: &mut Permutation) {

 for i in 0..result.0.len() {

 // SAFETY: ... ?

 unsafe {

 *result.0.get_unchecked_mut(i) =

*self.0.get_unchecked(*b.0.get_unchecked(i));

 }

 }

 }

 pub fn compose(&self, b: &Permutation) -> Permutation {

 let mut result = Self(vec![0; self.0.len()].into_boxed_slice());

 self.compose_into(b, &mut result);

 result

 }

}

All of a sudden, we’ve opened up an unsafety hole! We implicitly assumed

that the permutations to compose were from the same permutation group.

This is not necessarily true: what if a library user composes two base

permutations from different permutation groups? If the permutation lengths

don’t match, get_unchecked will index out of bounds and exhibit undefined

behavior; this is clearly a problem! The intent of this operation is obviously

nonsensical, but it does not change the fact that it is still our responsibility,

as the crate author, that the safe functions we provide can never cause

undefined behavior.

There is a more fundamental reason to care about this unsoundness if left

unchecked. An invariant of permutation composition within the same

permutation group is membership; if the permutations to compose are in the

same permutation group, the resulting permutation is also in that group.

Even if the lengths of permutations from two different permutation groups

175

did match, composing them could produce a permutation outside of either

group, which is a logic error. Other code may even have unsafe blocks that

rely on permutation group membership, for example a Rubik’s Cube solver

optimized for speed.

Mitigating this by checking permutation group membership every function

call is a very expensive operation. This is an example of the “practical

scenario” mentioned beforehand.

We have demonstrated that the newtype pattern alone is not powerful

enough to prevent this logic error. We will analyze different approaches that

ensure our library only permits permutation composition within the same

permutation group. Each has their own trade-offs, but are all right answers

for different situations. They will also lay the groundwork to justify using

the generativity pattern.

All the code segments provided in this article can be found here [10].

2. The unsafe approach
The simplest solution is to mark Permutation::compose_into and

Permutation::compose unsafe.

/// # Safety

///

/// `self`, `b`, and `result` must all be from the same

/// permutation group.

pub unsafe fn compose_into(&self, b: &Permutation, result: &mut Permutation) {

 for i in 0..result.0.len() {

 // SAFETY: permutations within the same group can be

 // composed.

 unsafe {

 *result.0.get_unchecked_mut(i) =

*self.0.get_unchecked(*b.0.get_unchecked(i));

 }

 }

}

Although the extent of the undefined behavior with permutation

composition is just the bounds checking, the goal of this approach is to

176

enforce permutation group membership. Thus, the above safety contract is

made more restrictive to reflect this idea. The usage of unsafe to maintain a

validity invariant is contentious. Permutation composition of the same

length within different permutation groups is a logic error, and it violates the

safety contract, but is not technically unsafe. Sure, you might panic later on

or get some other issue, but this alone will never cause undefined behavior.

To play devil’s advocate, since we only care about composition within the

same permutation group, one may consider producing an invalid value from

this type of permutation composition undefined behavior. With the safety

contract’s additional restriction, calling code no longer has to worry about

handling this logic error, while additionally gaining the contextual benefit of

this assumption. Personally, I believe this use of unsafe is warranted—at the

end of the day, the safety contract does still prevent undefined behavior. I

encourage you to have your own opinion [11].

If you don’t care about using unsafe—and there are valid reasons not to—

then this might be what you want. That said, it’s not always going to be this

simple. What if we introduce a new trait, ComposablePermutation, that

generalizes over different permutation representations? For example, the

PSHUFB instruction can compose two permutations in a single clock cycle if

they have less than sixteen elements.

pub trait ComposablePermutation: Clone {

 fn from_mapping(mapping: Vec<usize>) -> Result<Self, &'static str>;

 /// # Safety

 ///

 /// `self`, `b`, and `result` must all be from the same

 // permutation group.

 unsafe fn compose_into(&self, b: &Self, result: &mut Self);

 /// # Safety

 ///

 /// `self` and `b` must both be from the same permutation

 // group.

 unsafe fn compose(&self, b: &Self) -> Self {

 let mut result = self.clone();

177

 // SAFETY: `self`, `b`, and `result` are all from the

 // same permutation group.

 unsafe { self.compose_into(b, &mut result) };

 result

 }

}

impl ComposablePermutation for Permutation {

 // ...

}

The consequences of using unsafe begin to show. Because our generic

Permutation implements ComposablePermutation, and we have shown that

permutation composition from different permutation groups may cause

undefined behavior, Permutation::compose_into must be made unsafe at

the trait level. Rust doesn’t allow us to only make Permutation’s

implementation unsafe. Either all implementers must be made unsafe, or

none at all. In a library about permutation composition, we have now forced

our users to wrangle with unsafe for its most essential operation. Not just

with Permutation::compose_into, but with all of their own

implementations of ComposablePermutation!

“That is completely unfair!” You might say. “This is a small edge condition I

don’t care about. I’m going to mark this trait method safe anyways.” Well, the

Rust community generally has a zero-tolerance stance on undefined

behavior; the last time someone wanted to mark an unsound method safe, it

didn’t end very well [12].

3. The atomic ID approach
The second approach is to validate our base permutations upfront and use a

private integer to associate them to a unique permutation group. This

simplifies the test for permutation group membership to a cheap integer

comparison. Internalizing how this approach works will be crucial to

understanding the generativity approach. Rereading is encouraged.

178

use std::sync::atomic::{AtomicU64, Ordering::Relaxed};

pub struct PermGroup {

 base_permutation_length: usize,

 base_permutations: Vec<Permutation>,

 id: u64,

}

static ID: AtomicU64 = AtomicU64::new(0);

impl PermGroup {

 pub fn new(

 base_permutation_length: usize,

 base_permutation_mappings: Vec<Vec<usize>>,

) -> Result<Self, &'static str> {

 for mapping in &base_permutation_mappings {

 validate_permutation(mapping, base_permutation_length)?;

 }

 let id = ID.fetch_add(1, Relaxed);

 Ok(Self {

 base_permutation_length,

 base_permutations: base_permutation_mappings

 .into_iter()

 .map(|mapping| Permutation(mapping.into_boxed_slice(), id))

 .collect(),

 id,

 })

 }

 pub fn base_permutations(&self) -> &[Permutation] {

 &self.base_permutations

 }

}

The implementation of PermGroup does not actually change much. As before,

we check that all mappings from base_permutation_mappings are valid

permutations of the same length before creating a new PermGroup. This time,

we utilize a global AtomicU64 to uniquely identify the permutations in a

permutation group, passing it as an integer to Permutation. The integer is

guaranteed to be unique for Permutations among different PermGroups

because we increment the identifier every call to PermGroup::new.

179

pub struct Permutation(Box<[usize]>, u64);

impl Permutation {

 pub fn from_mapping_and_group(

 mapping: Vec<usize>,

 group: &PermGroup,

) -> Result<Self, &'static str> {

 validate_permutation(&mapping, group.base_permutation_length)?;

 let permutation = Self(mapping.into_boxed_slice(), group.id);

 validate_permutation_group_membership(&permutation,

&group.base_permutations)?;

 Ok(permutation)

 }

 pub fn compose_into(&self, b: &Self, result: &mut Self) -> Result<(),

&'static str> {

 if self.1 != b.1 || b.1 != result.1 {

 return Err("Permutations must come from the same permutation

group");

 }

 for i in 0..result.0.len() {

 // SAFETY: `self`, `b`, and `result` have the same ID.

 // Therefore, they are members of the same group and

 // can be composed.

 unsafe {

 *result.0.get_unchecked_mut(i) =

*self.0.get_unchecked(*b.0.get_unchecked(i));

 }

 }

 Ok(())

 }

 pub fn compose(&self, b: &Self) -> Result<Self, &'static str> {

 let mut result = Self(vec![0; self.0.len()].into_boxed_slice(),

self.1);

 self.compose_into(b, &mut result)?;

 Ok(result)

 }

}

Creating a new Permutation now requires a mapping and a PermGroup

reference. Once the mapping is verified as both a valid permutation and a

member of that permutation group, only then is a new Permutation created

180

with that PermGroup’s identifier, as a “token” of its membership. We can no

longer create Permutations willy-nilly from just a mapping because that

would offer no guarantees about the uniqueness of its identifier.

The fruits of our labor are rewarded in Permutation::compose_into. The

expensive permutation group membership test is performed exclusively

during Permutation’s creation. When two permutations are composed, those

same “tokens” are used to cheaply verify membership within the same

permutation group. Hence, callers can safely assume permutation

composition produces another permutation in the same permutation group

without compromising efficiency.

This solution is likely to be considered good enough in industry—most

practitioners would need a good reason to care more about this problem.

However, if your interest is piqued, what would really be nice is an infallible

yet zero-cost permutation composition operation—one that is guaranteed to

be valid at compile-time and as fast as the unsafe approach. If you’re willing

to go a small step farther, we arrive at…

4. The generativity approach
The big reveal: the generativity approach is equivalent to the atomic ID

approach, except everything is done at compile-time. Generativity solves the

fundamental problem thus far: the invariant of Permutation guarantees it is

a valid permutation, but not that it is necessarily associated with a specific

PermGroup.

Existing literature achieves generativity by sacrificing ergonomics and

readability. They require wrapping all code in (often deeply nested) closures,

warding off much of their interest in practice. We will spend the rest of this

article examining Crystal Durham [5]‘s generativity [6] crate, which

utilizes a novel and highly experimental technique to achieve generativity

without needing a closure. Later, we will show that the generativity crate

is a zero-cost compile-time abstraction.

(Subtle-but-no-so-subtle foreshadowing: we will explore my own improvement

to this technique in the next section)

181

use generativity::{Guard, Id, make_guard}

fn main() {

 // Create a variable `guard` of type `Guard<'_>`

 make_guard!(guard);

 // Consume that `guard` into an `Id<'_>`

 let id: Id<'_> = guard.into();

}

generativity publicizes three things: Guard, Id, and make_guard. Invoking

the make_guard macro creates a Guard<'_> with a let binding, an identifier

that carries a guaranteed unique lifetime. This lifetime is not actually used as

a lifetime in the usual sense. It exists solely to make each instance of

Guard<'_> a unique type. This is not voluntary nor merely a suggestion; the

following does not compile because make_guard’s lifetime uniqueness

guarantee cannot be broken3.

fn unify_lifetimes<'a>(a: &Guard<'a>, b: &Guard<'a>) {}

make_guard!(a);

make_guard!(b);

// rejected: unique lifetimes cannot be unified (this

// is not the actual compiler error message)

unify_lifetimes(&a, &b);

Id<'_> is like Guard<'_> except that it implements Copy and Clone while the

latter does not. So, to create distributable copies of this identifier, you must

consume a Guard<'_> into an Id<'_> using its From implementation. This is

all that generativity exports.

3This lifetime is not technically unique. You could unify it with another lifetime in a
similar function call: fn unify_lifetimes<'id>(impostor: &'id (), guard:
&Guard<'id>) { ... }. The lifetime is only unique among the provided Id<'id> and
Guard<'id> types, so as long as your code only trusts lifetimes carried by those types it
will be sound.

182

With the generativity pattern in place, the body of PermGroup::new remains

sound because it creates Permutations with the same lifetime identifier,

making it unique among different PermGroups.

pub struct PermGroup {

pub struct PermGroup<'id> {

 base_permutation_length: usize,

 base_permutations: Vec<Permutation>,

 id: u64,

 id: Id<'id>

}

pub fn new(

 base_permutation_length: usize,

 base_permutation_mappings: Vec<Vec<usize>>,

 guard: Guard<'id>,

) -> Result<Self, &'static str> {

 for mapping in &base_permutation_mappings {

 validate_permutation(mapping, base_permutation_length)?;

 }

 let id = ID.fetch_add(1, Relaxed);

 let id = guard.into();

 Ok(Self {

 base_permutation_length,

 base_permutations: base_permutation_mappings

 .into_iter()

 .map(|mapping| Permutation(mapping.into_boxed_slice(), id))

 .collect(),

 id,

 })

}

Why is guard passed as an argument, and why isn’t make_guard creating it

within the function body? This reveals generativity’s implementation

caveat: a Guard<'id> can never escape the scope it was defined in. Think of

creating a Guard<'id> as creating a reference to a local variable. No matter

what, it is only valid inside of its enclosing scope.

So, instantiating two different permutation groups, for example, looks like

this:

183

make_guard!(guard1);

make_guard!(guard2);

let first = PermGroup::new(..., guard1);

let second = PermGroup::new(..., guard2);

// rejected: `guard1` used after move

// let third = PermGroup::new(..., guard1);

The purpose of Guard<'id> when Id<'id> already exists becomes clear

when considering that third is rejected by the compiler. If PermGroup::new

accepted an Id<'id>, two different permutation groups could be assigned

the same Id<'id> because it implements Copy.

Okay, this is all fine and dandy, but how does this help improve permutation

composition?

pub struct Permutation(Box<[usize]>, u64);

pub struct Permutation<'id>(Box<[usize]>, Id<'id>);

Recall that every Id<'id> carries a unique lifetime among different

PermGroup<'id>s. By combining Permutation with Id<'id> and a lifetime

parameter, we create a collection Permutation<'id>s whose types are the

same within a PermGroup<'id> but distinct from permutations within other

PermGroups<'id2>s. Our permutation composition function takes in the

same type Self for all arguments—it follows that Permutation<'id>s from

different permutation groups cannot be composed as they are not the same

type, and Permutation<'id>s from the same permutation group can be

composed as they are the same type. This is the essence of the generativity

pattern, enforced at compile-time.

Behold: a permutation composition function that is unchecked, infallible,

and safe. The full implementation is here [13].

pub fn compose_into(&self, b: &Self, result: &mut Self) -> Result<(),

&'static str> {

 if self.1 != b.1 || b.1 != result.1 {

 return Err("Permutations must come from the same permutation group");

184

 }

pub fn compose_into(&self, b: &Self, result: &mut Self) {

 for i in 0..result.0.len() {

 // SAFETY: `self`, `b`, and `result` are members of the

 // same group and can be composed.

 unsafe {

 *result.0.get_unchecked_mut(i) =

*self.0.get_unchecked(*b.0.get_unchecked(i));

 }

 }

 Ok(())

}

Let us informally prove generativity’s equivalence to the atomic ID

approach:

• In the atomic ID approach, unique integer identifiers are created à la

ID.fetch_add(1, Relaxed). This directly parallels make_guard!(guard),

which creates a unique Guard<'id> identifier.

• The unique integer identifier is then stored inside a primitive u64. This

implements Copy and it is distributed among the input base permutations

to associate each one with its permutation group. Similarly, Id<'id>

serves this purpose.

• The unique integer identifier is used to test permutation group

membership during permutation composition, erroring if not the case. The

generativity pattern directly embeds the same test into the type system.

It would be irresponsible for me to advertise the generativity crate as a

perfect solution barring its implementation caveat. Yes, the implementation

caveat is its only functional limitation, but there are some developer

experience problems to consider.

• Although there’s only a single line marked unsafe in our

Permutation<'id> example, its soundness is now much harder to justify. It

is on the developer to prove that 'id uniquely associates permutations to

their permutation group; any mishandling could easily make the whole

thing unsound (i.e. if PermGroup::new took an Id<'id> instead of a

Guard<'id>).

185

• The 'id lifetime, like all other lifetimes, is pervasive. Data structures that

wish to store Guard<'id> or Id<'id>, or any other data structure that

stores Guard<'id> or Id<'id>, must have a lifetime annotation. But

make_guard is typically invoked at the outermost scope, and will likely

have to be passed through many types, so the number of lifetime

annotations is amplified.

• Some APIs require types to satisfy 'static. For example, the closure

passed to thread::spawn must satisfy 'static, making it impossible to

return a Permutation<'id>. The workaround is usually an inconvenient

band-aid; in this case the standard library offers thread::scope to borrow

non-'static data in a thread.

• The compiler errors [14] from misusing generativity don’t provide the

location of the error. They are generally confusing, even when you know

how generativity internally works.

The atomic ID approach shares only the first problem. Given your use case,

it might be what you want.

4.1. The fundamental purpose
Notice how different instances of Permutation<'id> masquerade as separate

types even though they have the same underlying data representation. In

Rust, 'id is known as a branded lifetime, or more generally, a type brand. The

first principles of type branding date back at least to the work of John

Launchbury and Simon Peyton Jones on the ST monad in Haskell [15]

(section 2.5.2) in 1995. Aria Desires’ master’s thesis [16] (section 6.3) brought

this into the context of Rust in 2015, coining lifetime branding in Rust with

the term “generativity.” The more recent GhostCell paper [2] by Joshua

Yanovski and others utilized generativity to present interior mutability as a

zero-cost abstraction in 2021.

This segues into an important point. The fundamental purpose of the

generativity pattern is not necessarily to improve performance, but to

statically require that individual values come from or refer to the same

source. The performance benefits are a symptom of this requirement. I like

to informally think of it as a stronger form of ownership.

186

For an alternative perspective, Aria Desires’ master’s thesis explores this

idea with a concept called a BrandedVec. When the ith element of an

ordinary vector vec is accessed through &vec[i], a run-time check is

performed to see if i is in bounds. If not, then the program will panic.

However, in many situations we know that the indices are always in bounds;

one such case regards the append-only vector, the BrandedVec. All elements

pushed to this type of vector are forever valid. Leveraging this fact, the push

operation returns the index of the pushed element so it can later be used to

soundly perform unchecked indexing.

If we wanted to mark the unchecked indexing operation safe, this returned

index can’t be an ordinary usize. Bad actors may provide their own usize

instead of one returned from the push operation. This returned index can’t

be a newtyped usize either. The problem with this is a microcosm of the

problem with our initial Permutation example: different indices from

different append-only vectors may be used to unsoundly index one another.

To make our accesses safe, the solution is to lifetime brand the returned

indices to statically associate them with vec—the generativity pattern.

As hinted to beforehand, generativity has traditionally only been achieved

through the use of a closure. The GhostCell paper includes this following

example, taken from its inspired adaption [17] of BrandedVec.

let vec1: Vec<u8> = vec![10, 11];

let vec2: Vec<u8> = vec![20, 21];

BrandedVec::new(vec1, move |mut bvec1: BrandedVec<u8>| {

 bvec1.push(12);

 let i1 = bvec1.push(13);

 let _idx = bvec1.get_index(0).unwrap();

 BrandedVec::new(vec2, move |mut bvec2: BrandedVec<u8>| {

 let i2 = bvec2.push(22);

 println!("{:?}", bvec2.get(i2)); // No bound check! Prints 22

 *bvec2.get_mut(i2) -= 1; // No bound check!

 println!("{:?}", bvec2.get(i2)); // Prints 21

 println!("{:?}", bvec1.get(i1)); // Prints 13

 // rejected: i1 is not an index of bvec2

 // println!("{:?}", bvec2.get(i1));

187

 });

});

Each BrandedVec created from a Vec receives its own lifetime brand within

each closure4. In terms of ergonomics, it’s not exactly your Friendly

Neighborhood Spider-Man.

But through the generativity crate, we eliminate the rightward drift,

changing just nine lines [20] of BrandedVec’s implementation. The API now

appears less foreign and more Rust-like.

let vec1: Vec<u8> = vec![10, 11];

let vec2: Vec<u8> = vec![20, 21];

make_guard!(guard1);

let mut bvec1 = BrandedVec::new(vec1, guard1);

bvec1.push(12)

let i1 = bvec1.push(13);

let _idx = bvec1.get_index(0).unwrap();

make_guard!(guard2);

let mut bvec2 = BrandedVec::new(vec2, guard2);

let i2 = bvec2.push(22);

println!("{:?}", bvec2.get(i2)); // No bound check! Prints 22

*bvec2.get_mut(i2) -= 1; // No bound check!

println!("{:?}", bvec2.get(i2)); // Prints 21

println!("{:?}", bvec1.get(i1)); // Prints 13

// rejected: i1 is not an index of bvec2

4Rust doesn’t have rank-2 polymorphism [18], so we need to replicate it using a closure
with a Higher-Rank Trait Bound [19]. The type signature of the closure passed to
BrandedVec::new is inner: impl for<'id> FnOnce(BrandedVec<'id, T>) -> R, and
this just means every call to inner must be prepared to handle an argument with any
possible lifetime. Within a single function the compiler has perfect information, but
calling inner inside BrandedVec::new tricks the borrow checker. Since it doesn’t (and will
likely never) do interprocedural analysis, it conservatively sees every call to inner as
producing an opaque lifetime that can’t be unified with any other. To avoid any relation
with an existing lifetime, a fresh new lifetime is statically generated for every call to
BrandedVec::new, our lifetime brand for BrandedVec<'id, T>. This is just a brief
overview of a well-investigated topic. Repeating for convenience, further reading is
encouraged here [16] (section 6.3) and here [2] (section 2.2.1).

188

// println!("{:?}", bvec2.get(i1))

Our digression in bringing up this comparison has an ulterior motive. The

original closure technique bears the exact same implementation caveat with

generativity: nothing declared inside of the closure can escape it.

make_guard effectively does the same thing as wrapping the rest of the

function in an immediately invoked closure, and is no less capable than the

closure technique.

4.2. Why the implementation caveat?
Let us offer another perspective as to why Guard<'id> cannot escape its

defining scope. StackOverflow user rodrigo [21] points out [22] that you can

achieve something similar to generativity using an anonymous unit struct

and a macro to create the permutation group. Successive calls to this macro

create permutation groups branded by this newly generated unit struct. In

the context of our Permutation example, example usage looks like this. The

full implementation is here [23].

#[macro_export]

macro_rules! new_perm_group {

 ($len:expr, $mappings:expr) => {{

 let len = $len;

 let mappings = $mappings;

 struct InvariantToken;

 // SAFETY: private API, only used in this macro.

 unsafe {

 $crate::PermGroup::<InvariantToken>::new(len, mappings)

 }

 }};

}

let first_perm_group = new_perm_group!(4, vec![vec![1, 2, 0, 3]]).unwrap();

let second_perm_group = new_perm_group!(3, vec![vec![2, 0, 1]]).unwrap();

let first_perm = &first_perm_group.base_permutations()[0];

let second_perm = &second_perm_group.base_permutations()[0];

189

// rejected: `first_perm` and `second_perm` are not the same type

// first_perm.compose(second_perm);

The flaw is quite subtle. The macro constructor creates a token per-call-site

instead of per-owner. Every expression results in a particular type; if the

same macro is run more than once, it will produce the same type, even if it is

unique to the expression. This can be exploited to give multiple owners the

same brand. To exemplify:

let first = (4, vec![vec![1, 2, 0, 3]]);

let second = (3, vec![vec![2, 0, 1]]);

let mut perm_groups = vec![];

for (len, mappings) in [first, second] {

 // I expanded the macro to make it easier to understand!

 // perm_groups.push(new_perm_group!(len, mappings).unwrap());

 perm_groups.push({

 let len = len;

 let mappings = mappings;

 struct InvariantToken;

 // SAFETY: private API, only used in this macro.

 unsafe {

 crate::PermGroup::<InvariantToken>::new(len, mappings)

 }

 }.unwrap());

}

let first_perm = &perm_groups[0].base_permutations()[0];

let second_perm = &perm_groups[1].base_permutations()[0];

// not rejected, UB!

first_perm.compose(second_perm);

We have just invoked undefined behavior from safe user-facing code. This is

unsound without question, and there is no point in endorsing this approach.

There is a remedy: combine InvariantToken with a locally-scoped lifetime,

as illustrated [24] in binarycat [25]‘s crate typetoken [26]. This only creates

a strictly less capable version of generativity. There is no point in

endorsing this approach either.

190

If the above code were possible with generativity, 'id could escape the

scope and assign all elements of the vector the same lifetime brand. We

would have the exact same unsoundness problem, thus we cannot use a loop

to create a dynamic number of PermGroup<'id>s.

5. How does generativity work?
At this point a good part of my readers are itching to know what makes the

generativity crate so magical compared to the age-old closure technique.

The suspense is probably killing you. Or more likely putting you to sleep.

We will introduce the inner workings of generativity top-down. I will first

present my own minimal rewrite of the generativity crate, called

min_generativity. Then, we will comprehensively walk through how each

part of it works.

5.1. min_generativity

use std::marker::PhantomData;

pub type Id<'id> = PhantomData<fn(&'id ()) -> &'id ()>;

pub struct Guard<'id>(pub Id<'id>);

impl<'id> From<Guard<'id>> for Id<'id> {

 fn from(guard: Guard<'id>) -> Self {

 guard.0

 }

}

pub struct LifetimeBrand<'id>(PhantomData<&'id Id<'id>>);

impl<'id> LifetimeBrand<'id> {

 pub fn new(_: &'id Id<'id>) -> Self {

 LifetimeBrand(PhantomData)

 }

}

impl<'id> Drop for LifetimeBrand<'id> {

 fn drop(&mut self) {}

}

191

#[macro_export]

macro_rules! make_guard {

 ($name:ident) => {

 let branded_place: $crate::Id = std::marker::PhantomData;

 let lifetime_brand = $crate::LifetimeBrand::new(&branded_place);

 let $name = $crate::Guard(branded_place);

 };

}

Before we get started, let’s get some low hanging fruit out of the way. We

can verify that min_generativity is zero-cost: every single type is some

form of PhantomData, a zero-sized type that is optimized away at compile-

time. However, there is a sharp corner: we create a reference to a

PhantomData in make_guard, and references to zero-sized types are perhaps

surprisingly not zero-sized [27] due to some idiosyncrasies. Thus, we cannot

prove min_generativity is zero-cost as Rust lacks a specification for

optimization behavior. I claim that in practice this is the case the

overwhelming majority of the time. The reference: is never used anywhere,

is associated with an unused variable (lifetime_brand), and has no Drop

impl. Even at the most basic optimization level, rustc is smart enough to no-

op everything [28].

Note that min_generativity benevolently assumes that library users will

only use make_guard to construct Id<'id> and Guard<'id>, as both are

public types with public field visibility. The actual generativity crate

privatizes Id<'id> (via a newtype) and Guard<'id> and marks their

constructors unsafe, hidden within make_guard. Such was omitted to be

concise.

5.2. The first part

use std::marker::PhantomData;

pub type Id<'id> = PhantomData<fn(&'id ()) -> &'id ()>;

If you’ve only used PhantomData when the compiler has told you to, this

certainly looks nonsensical. The purpose of Id<'id> as we saw earlier is to

192

carry a unique lifetime brand among different PermGroup<'id>s, but aren’t

lifetimes already unique? What’s the deal?

In Rust, variance determines whether you can substitute one lifetime for

another. If you have a longer lifetime, Rust lets you use it where a shorter

one is expected. This is also known as subtyping. Normally this is good—

subtyping introduces static analysis that allows for more programs to

compile—but in our case this automatic substitution works against our favor.

If an Id<'id> can be tied to a lifetime other than its lifetime brand, we lose.

So, the unique lifetime 'id must have no subtyping relation with other

lifetimes; 'id is what’s called an invariant lifetime.

The contemporary usage of the word “invariant” by Rustaceans has two

meanings: one as a type-level guarantee (a noun), and one as a no-subtyping

relation (an adjective). Invariant generally means something that cannot

change or must be fixed to a specific value. Both meanings refer to this same

general concept. We’ve been working with the first meaning so far, but for

the rest of this article we’ll switch to the second one.

To make 'id invariant, we take advantage of a fundamental constraint with

function pointer types. When you have fn(&'id T) -> &'id T, the caller

provides a reference with lifetime 'id and expects to get back a reference

with that same lifetime 'id. If Rust allowed the function pointer type to

accept a longer lifetime but return a shorter one, or vice versa, it would

break this explicit contract. You might pass in a reference that lives for ten

seconds but get one back that lives for five seconds, creating a dangling

pointer. Function pointer types with the same lifetime in the input and

output positions force that lifetime to be invariant. No substitution allowed.

Of course, we don’t actually want to store a function pointer at run-time. We

only utilize it to make 'id invariant at compile-time. The language provides

PhantomData to enable fine-grained control over variance. In this case it tells

the compiler to pretend like it holds a function pointer while not actually

taking up any space.

193

Throughout the years lifetime invariance has been achieved in several

other ways.

pub type Id<'id> = PhantomData<&'id mut &'id ()>; // Rust standard

library

pub type Id<'id> = PhantomData<*mut &'id ()>; // GhostCell paper

pub type Id<'id> = PhantomData<Cell<&'id u8>>; // Aria Desires' master's

thesis

pub type Id<'id> = PhantomData<Cell<&'id mut ()>>; // Also from her

master's thesis

They work because they follow the core principal that &mut T is

invariant over T (click here [29] to see why). With T = &'id (), 'id

must become invariant. Unlike the others, PhantomData<fn(T) -> T>

implements all auto traits (Send, Sync, etc) for its owner, and it is

generally preferred to convey that the only purpose is to indicate

invariance. For further reading, the Rustonomicon provides a table

[30] of common PhantomData patterns.

When I first learned how to use PhantomData to indicate variance I couldn’t

help but think of it as an obnoxiously leaky abstraction. There is a

movement [31] to make it a bit more ergonomic by introducing custom

variance newtypes into the standard library, i.e. PhantomInvariantLifetime.

Sure enough, the status quo of PhantomData has been considered “something

of a failure [32].”

5.3. The second part

pub struct Guard<'id>(pub Id<'id>);

impl<'id> From<Guard<'id>> for Id<'id> {

 fn from(guard: Guard<'id>) -> Self {

 guard.0

 }

}

194

The entire implementation of Guard<'id> is a newtype around Id<'id>. The

established difference being that Guard<'id> doesn’t implement Copy or

Clone. We provide a From implementation to consume a Guard<'id> into an

Id<'id> to create distributable copies of the lifetime brand, as we saw

earlier.

5.4. The third part

pub struct LifetimeBrand<'id>(PhantomData<&'id Id<'id>>);

impl<'id> LifetimeBrand<'id> {

 pub fn new(_: &'id Id<'id>) -> Self {

 LifetimeBrand(PhantomData)

 }

}

impl<'id> Drop for LifetimeBrand<'id> {

 fn drop(&mut self) {}

}

#[macro_export]

macro_rules! make_guard {

 ($name:ident) => {

 let branded_place: $crate::Id = std::marker::PhantomData;

 let lifetime_brand = $crate::LifetimeBrand::new(&branded_place);

 let $name = $crate::Guard(branded_place);

 };

}

It turns out that disabling lifetime subtyping is not enough. While Rust

believes it’s unsound to freely resize 'id, there’s nothing that constrains

where 'id should come from. Consider the following system:

fn unify_lifetimes<'id>(_: &Id<'id>, _: &Id<'id>) {}

let id1: Id<'id1> = PhantomData;

let id2: Id<'id2> = PhantomData;

unify_lifetimes(&id1, &id2);

195

The constraint solver realizes there is no logical contradiction with the

obvious solution of 'id2 = 'id1, and it allows this program to compile. We

need to uniquely tie 'id1 and 'id2 to their respective declaration sites to

prevent Rust from unifying them.

After make_guard creates branded_place and generates an invariant lifetime

'id, we are now armed with the knowledge required to examine how

LifetimeBrand ensures it is non-unifiable. It takes the approach of

establishing distinct lower and upper bounds for 'id, highlighting the need

for a macro with protected hygiene to prevent these bounds from potentially

being manipulated.

Notice that LifetimeBrand carries the phantom type &'id Id<'id> (to avoid

actually storing the reference). The existence of LifetimeBrand’s Drop impl

means this borrowed data could potentially be used at the end of the scope,

delegating special analysis called the drop check [33]. The drop check forces

the compiler to extend 'id to live at the point where lifetime_brand is

dropped, constituting our lower bound. The actual Drop impl is purposefully

left blank.

An important guarantee from the compiler is that local variables in a scope

are dropped in the opposite order they are defined. Now we must prevent

successive make_guard invocations in the same scope from unifying with the

first invocation whose lifetime lives the longest. We are left with a need to

upper-bound 'id, and this is done by tying 'id to the borrow of what created

it. So, any expansion of 'id would mean branded_place’s borrow of lifetime

'id wouldn’t live long enough when it is dropped.

If you still find it confusing, I encourage you to work out rustc’s error

message in this example [34]. I also encourage you to play around with this

code snippet to see what compiles and what doesn’t. I’ve found this exercise

illuminating. Another tip to help you understand is to remember the pithy

saying that lifetimes are descriptive, not prescriptive.

5.5. Verifying soundness
It is easy to verify that generativity is sound.

196

make_guard!(id1);

make_guard!(id2);

assert_eq!(id1, id1);

assert_eq!(id2, id2);

// rejected: `branded_place` does not live long enough

// assert_eq!(id1, id2);

At the time of writing, this test case passes. However, generativity’s vice is

that it relies on internal behavior from the drop check analysis, the precise

rules of which have historically been ill-defined and subject to change. In

theory, sufficiently advanced analysis would be able to see that dropping

lifetime_brand doesn’t require 'id to live because its Drop impl is empty,

destroying the uniqueness guarantee we have created.

The full extent of the current drop check analysis is detailed in a t-

types meeting document [35]. TL;DR [33].

Pertaining to our concerns, any weakening of the drop check forcing

captured lifetimes to live will most likely be opt-in, based on the direction of

the “drop check eyepatch” RFC [36]. It introduces the unsafe #[may_dangle]

attribute which relaxes this requirement. #[may_dangle] opts-in a struct’s

Drop impl to say, “I don’t access a generic parameter, so it can be dropped

before I run.” Drop check eyepatch was introduced as a hacky refinement

over “unguarded escape hatch [37],” which permitted high-priority

collections like Vec<&T> to drop despite the &T borrow being invalidated

beforehand.

197

Here are some famous last words. Drop check eyepatch was accepted nine

years ago, yet stabilization is still opposed [38]. There are too many subtle

gotchas with respect to the drop check that have been found to be too much

of a footgun even for an internal compiler feature. It has resulted in

unsoundness multiple [39] times [40]. The stable analysis is deliberately

conservative for this reason. To quote from the Rustonomicon’s explanation

[41] of #[may_dangle], “it is better to avoid adding the attribute.”

The existing avenue of improvement [42] clarifies the semantics but still

holds that this behavior will be opt-in. Hence, we can strengthen our

confidence that the livelihood requirements for generativity will remain

sound.

There are two other soundness concerns that are unlikely to be problematic

but are still brought up in brief:

• generativity relies on an unused variable, lifetime_brand, to impact

borrow checking and the drop check. If support for unused variable

analysis is ever removed, then scopeguard [43], a crate with hundreds of

millions of downloads, would break, and Rust is very careful not to break

existing code. scopeguard also relies [44] on the Drop impl of an unused

variable. Additionally, with the drop check, borrow checking must also run

by virtue of lifetime_brand’s Drop impl, which could possibly access the

borrow5.

• In the ultra rare case where generativity is used in a divergent function,

the drop checker will realize that Drop never runs and skip the drop check

entirely. Special care [46] is required in this case to uphold soundness.

• It may still be hard to trust the delicate configuration of upper and lower

bounding the generated lifetime. With non-lexical lifetimes [47] stabilized

in 2022 as the second edition of the borrow checker, the only planned next

iteration is Polonius [48], the implementation of which currently passes

[49] the aforementioned test case. I haven’t given it much thought, but

5Unreachable code on the other hand is not borrow checked because it simply wasn’t a
priority [45].

198

proving generativity’s soundness with Polonius’ formal model of the

borrow checker would be a fun project (to me at least).

5.6. Language support
We can no longer ignore the elephant in the room with the make_guard

macro: it looks ugly. It injects local variables into the current scope, and we

saw this was necessary in the statement-position to prevent the lifetime

bounding tricks from being manipulated. For a while there was no

resolution, until just a few months ago when the experimental super let

[50] feature was introduced to extend the lifetimes of block-scoped variables.

By creating a block scope, expression-position make_guard is made possible

on nightly Rust.

#![feature(super_let)]

// ...

#[macro_export]

macro_rules! make_guard {

 ($name:ident) => {

 let branded_place: $crate::Id = std::marker::PhantomData;

 let lifetime_brand = $crate::LifetimeBrand::new(&branded_place);

 let $name = $crate::Guard(branded_place);

 };

 () => {{

 super let branded_place: $crate::Id = std::marker::PhantomData;

 super let lifetime_brand = $crate::LifetimeBrand::new(&branded_place);

 $crate::Guard(branded_place)

 }};

}

fn main() {

 make_guard!(guard);

 let guard = make_guard!();

}

Furthermore, there are preliminary ideas [51] that would allow make_guard

to be a function instead of a macro. The feedback for super let has so far

199

been positive, so once the semantics are ironed out I think efforts to stabilize

this feature will be underway.

My last contribution to this discussion is some wishful thinking about first-

class language support for generativity. The troubles with unique lifetime

branding stem from the fact that Rust offers no way to prevent lifetimes

from unifying. So, I propose the #[nonunifiable] lifetime attribute. It would

allow lifetimes to declaratively guarantee non-unifiability without having to

resort to generativity’s lifetime bounding tricks. #[nonunifiable] is not

intended to indicate variance—that’s the job of PhantomData. For the

permutation example, first-class language support from the compiler would

look like this. The full implementation is here [52].

pub struct PermGroup<#[nonunifiable] 'id> {

 base_permutation_length: usize,

 base_permutations: Vec<Permutation<'id>>,

 id: PhantomData<fn(&'id ()) -> &'id ()>

}

pub struct Permutation<'id>(Box<[usize]>, PhantomData<fn(&'id ()) -> &'id

()>);

First-class language support is also the perfect excuse to improve the

confusing [53] compiler errors:

let first = PermGroup::new(4, vec![vec![1, 2, 0, 3]]).unwrap();

let second = PermGroup::new(3, vec![vec![2, 0, 1]]).unwrap();

let first_perm = &first.base_permutations()[0];

let second_perm = &second.base_permutations()[0];

first_perm.compose(second_perm);

error[E0308]: mismatched types

 --> src/main.rs:9:23

 |

6 | let first_perm = &first.base_permutations()[0];

 | ---------- binding `first_perm` declared here with nonunifiable

lifetime `’1`

200

7 | let second_perm = &second.base_permutations()[0];

 | ----------- binding `second_perm` declared here with nonunifiable

lifetime `’2`

8 |

9 | first_perm.compose(second_perm);

 | ------- ^^^^^^^^^^^ expected `Permutation<'1>`, found a

different `Permutation<'2>`

 | |

 | arguments to this method are incorrect

 |

 = note: expected reference `&Permutation<'1>`

 found reference `&Permutation<'2>`

 = note: `Permtuation<'1>` and `Permutation<'2>` look like similar types, but

are distinct because they carry `#[nonunifiable]` lifetimes

Jack (one of this article’s peer reviewers) and I discussed what first-class

language support to remove the lifetime parameter and allow Guard to

escape its scope could look like. Unfortunately, we came to the conclusion

that such a system would be equivalent to the problem case described in

Section 4.2. Creating an arbitrary number of branded types in a loop during

run-time would require deep changes to the type system.

Maybe #[nonunifiable] will have an unexpected use case that would make

it practical, or maybe not. I’m not going to pretend like I’ve figured out all of

the semantics. The point is to get my thoughts up in the air.

6. Benchmarks
No comparison would be complete without a benchmark. Yes, the point of

the generativity pattern is more fundamental than just speed, but I know

what people want. I statically generated two random length-fifteen

permutations and wrote a Criterion benchmark for all five approaches to

permutation composition.

Benchmark Name Time (ns)

1-slice 14.805

2-newtype 4.257

201

4-atomic_id 3.940

5-generativity 3.604

3-unsafe_trait 3.602

Empirically, this validates all of my observations. The naive 1-slice is the

slowest because it checks every permutation for complete validity during

composition. 2-newtype removes most of the validation overhead.

Admittedly this is good enough; again, from a practical standpoint, you

would only care about the other solutions if you could prove that

permutation composition was the bottleneck. 4-atomic_id replaces the

validation with a single integer comparison, making it marginally faster,

likely because it avoids dereferencing. Finally, 5-generativity and 3-

unsafe_trait emerge the fastest because they avoid validation entirely, and

I have also verified that the generated machine code is identical. The

important difference: 3-unsafe_trait marks permutation composition

unsafe while 5-generativity does not.

7. Conclusion
Truthfully I don’t have many final thoughts. I just needed a transition to end

this article. I suppose my primary conclusion is that this article has gotten

far longer than I had originally planned 😛.

I don’t think this is a bad thing; its comprehensiveness more than makes up

for it. The hidden agenda was to survey design patterns and write about Rust

code I thought were interesting, culminating with the generativity pattern,

which shows us how to take advantage of the type checker’s power in a

non-obvious manner.

This concludes my SIGHORSE submission! I came into this topic with

surface level understandings of what generativity, PhantomData, and the

drop check are and how they work. I was not expecting this to take five

weeks of meticulous research and writing. I was entirely unprepared for how

interesting the full story would be.

202

8. References
[1] [Online]. Available: https://cliffle.com/blog/rust-typestate/

[2] [Online]. Available: https://plv.mpi-sws.org/rustbelt/ghostcell/

[3] [Online]. Available: https://github.com/kyren/gc-arena/?tab=readme-

ov-file#prior-art

[4] [Online]. Available: https://github.com/Manishearth/rust-gc

[5] [Online]. Available: https://cad97.com/

[6] [Online]. Available: https://crates.io/crates/generativity

[7] [Online]. Available: https://en.wikipedia.org/wiki/Permutation_group#

Composition_of_permutations%E2%80%93the_group_product

[8] [Online]. Available: https://rust-unofficial.github.io/patterns/patterns/

behavioural/newtype.html

[9] [Online]. Available: https://en.wikipedia.org/wiki/Permutation_group

[10] [Online]. Available: https://github.com/ArhanChaudhary/generativity-

pattern-rs

[11] [Online]. Available: https://users.rust-lang.org/t/should-i-use-unsafe-

merely-to-encourage-users-to-maintain-invariants/27856

[12] [Online]. Available: https://github.com/ogxd/gxhash/issues/82#

issuecomment-2257578785

[13] [Online]. Available: https://github.com/ArhanChaudhary/generativity-

pattern-rs/blob/main/src/5-generativity.rs

[14] [Online]. Available: https://play.rust-lang.org/?version=stable&mode=

debug&edition=2024&gist=4675f6eb33925940c51668ee15a00010

[15] [Online]. Available: https://doi.org/10.1007/BF01018827

[16] [Online]. Available: https://github.com/Gankra/thesis/blob/master/

thesis.pdf

203

https://cliffle.com/blog/rust-typestate/
https://plv.mpi-sws.org/rustbelt/ghostcell/
https://github.com/kyren/gc-arena/?tab=readme-ov-file#prior-art
https://github.com/kyren/gc-arena/?tab=readme-ov-file#prior-art
https://github.com/Manishearth/rust-gc
https://cad97.com/
https://crates.io/crates/generativity
https://en.wikipedia.org/wiki/Permutation_group#Composition_of_permutations%E2%80%93the_group_product
https://en.wikipedia.org/wiki/Permutation_group#Composition_of_permutations%E2%80%93the_group_product
https://rust-unofficial.github.io/patterns/patterns/behavioural/newtype.html
https://rust-unofficial.github.io/patterns/patterns/behavioural/newtype.html
https://en.wikipedia.org/wiki/Permutation_group
https://github.com/ArhanChaudhary/generativity-pattern-rs
https://github.com/ArhanChaudhary/generativity-pattern-rs
https://users.rust-lang.org/t/should-i-use-unsafe-merely-to-encourage-users-to-maintain-invariants/27856
https://users.rust-lang.org/t/should-i-use-unsafe-merely-to-encourage-users-to-maintain-invariants/27856
https://github.com/ogxd/gxhash/issues/82#issuecomment-2257578785
https://github.com/ogxd/gxhash/issues/82#issuecomment-2257578785
https://github.com/ArhanChaudhary/generativity-pattern-rs/blob/main/src/5-generativity.rs
https://github.com/ArhanChaudhary/generativity-pattern-rs/blob/main/src/5-generativity.rs
https://play.rust-lang.org/?version=stable&mode=debug&edition=2024&gist=4675f6eb33925940c51668ee15a00010
https://play.rust-lang.org/?version=stable&mode=debug&edition=2024&gist=4675f6eb33925940c51668ee15a00010
https://doi.org/10.1007/BF01018827
https://github.com/Gankra/thesis/blob/master/thesis.pdf
https://github.com/Gankra/thesis/blob/master/thesis.pdf

[17] [Online]. Available: https://gitlab.mpi-sws.org/FP/ghostcell/-/blob/

master/ghostcell/examples/branded_vec.rs

[18] [Online]. Available: https://en.wikipedia.org/wiki/Parametric_

polymorphism#Higher-rank_polymorphism

[19] [Online]. Available: https://doc.rust-lang.org/nomicon/hrtb.html

[20] [Online]. Available: https://github.com/ArhanChaudhary/generativity-

pattern-rs/commit/806c8bef89b1d0c0621db42c130856bf33fffb9f

[21] [Online]. Available: https://stackoverflow.com/users/865874/rodrigo

[22] [Online]. Available: https://stackoverflow.com/a/76876800

[23] [Online]. Available: https://github.com/ArhanChaudhary/generativity-

pattern-rs/blob/main/src/6-unsound_token.rs

[24] [Online]. Available: https://codeberg.org/binarycat/typetoken/src/

branch/trunk/src/lib.rs

[25] [Online]. Available: https://codeberg.org/binarycat

[26] [Online]. Available: https://crates.io/crates/typetoken

[27] [Online]. Available: https://github.com/rust-lang/rfcs/pull/2040#

issuecomment-317275303

[28] [Online]. Available: https://godbolt.org/z/4h4xccfjT

[29] [Online]. Available: https://doc.rust-lang.org/nomicon/subtyping.html#

variance

[30] [Online]. Available: https://doc.rust-lang.org/nomicon/phantom-data.

html#table-of-phantomdata-patterns

[31] [Online]. Available: https://github.com/rust-lang/rust/issues/135806

[32] [Online]. Available: https://github.com/rust-lang/rfcs/pull/3417#pullreq

uestreview-1396551771

[33] [Online]. Available: https://doc.rust-lang.org/std/ops/trait.Drop.html#

drop-check

204

https://gitlab.mpi-sws.org/FP/ghostcell/-/blob/master/ghostcell/examples/branded_vec.rs
https://gitlab.mpi-sws.org/FP/ghostcell/-/blob/master/ghostcell/examples/branded_vec.rs
https://en.wikipedia.org/wiki/Parametric_polymorphism#Higher-rank_polymorphism
https://en.wikipedia.org/wiki/Parametric_polymorphism#Higher-rank_polymorphism
https://doc.rust-lang.org/nomicon/hrtb.html
https://github.com/ArhanChaudhary/generativity-pattern-rs/commit/806c8bef89b1d0c0621db42c130856bf33fffb9f
https://github.com/ArhanChaudhary/generativity-pattern-rs/commit/806c8bef89b1d0c0621db42c130856bf33fffb9f
https://stackoverflow.com/users/865874/rodrigo
https://stackoverflow.com/a/76876800
https://github.com/ArhanChaudhary/generativity-pattern-rs/blob/main/src/6-unsound_token.rs
https://github.com/ArhanChaudhary/generativity-pattern-rs/blob/main/src/6-unsound_token.rs
https://codeberg.org/binarycat/typetoken/src/branch/trunk/src/lib.rs
https://codeberg.org/binarycat/typetoken/src/branch/trunk/src/lib.rs
https://codeberg.org/binarycat
https://crates.io/crates/typetoken
https://github.com/rust-lang/rfcs/pull/2040#issuecomment-317275303
https://github.com/rust-lang/rfcs/pull/2040#issuecomment-317275303
https://godbolt.org/z/4h4xccfjT
https://doc.rust-lang.org/nomicon/subtyping.html#variance
https://doc.rust-lang.org/nomicon/subtyping.html#variance
https://doc.rust-lang.org/nomicon/phantom-data.html#table-of-phantomdata-patterns
https://doc.rust-lang.org/nomicon/phantom-data.html#table-of-phantomdata-patterns
https://github.com/rust-lang/rust/issues/135806
https://github.com/rust-lang/rfcs/pull/3417#pullrequestreview-1396551771
https://github.com/rust-lang/rfcs/pull/3417#pullrequestreview-1396551771
https://doc.rust-lang.org/std/ops/trait.Drop.html#drop-check
https://doc.rust-lang.org/std/ops/trait.Drop.html#drop-check

[34] [Online]. Available: https://play.rust-lang.org/?version=stable&mode=

debug&edition=2024&gist=649d51907c2612c310eb627a0c863399

[35] [Online]. Available: https://hackmd.io/h9YBnIbaRSCD7Ej6hUpF_w

[36] [Online]. Available: https://rust-lang.github.io/rfcs/1327-dropck-param-

eyepatch.html

[37] [Online]. Available: https://rust-lang.github.io/rfcs/1238-

nonparametric-dropck.html#unguarded-escape-hatch

[38] [Online]. Available: https://rust-lang.zulipchat.com/#narrow/stream/

144729-t-types/topic/Perma-unstable.20status.20of.20.60.23.5Bmay_

dangle.5D.60

[39] [Online]. Available: https://github.com/rust-lang/rust/issues/76367

[40] [Online]. Available: https://github.com/rust-lang/rust/issues/99408

[41] [Online]. Available: https://doc.rust-lang.org/nomicon/dropck.html#an-

escape-hatch

[42] [Online]. Available: https://github.com/rust-lang/rfcs/pull/3417

[43] [Online]. Available: https://crates.io/crates/scopeguard

[44] [Online]. Available: https://docs.rs/scopeguard/latest/src/scopeguard/

lib.rs.html#287

[45] [Online]. Available: https://github.com/rust-lang/rust/issues/91377#

issuecomment-993875185

[46] [Online]. Available: https://github.com/CAD97/generativity/pull/16

[47] [Online]. Available: https://blog.rust-lang.org/2022/08/05/nll-by-

default/

[48] [Online]. Available: https://github.com/rust-lang/polonius

[49] [Online]. Available: https://rust.godbolt.org/z/vhMjKGbz3

[50] [Online]. Available: https://github.com/rust-lang/rust/pull/139080

205

https://play.rust-lang.org/?version=stable&mode=debug&edition=2024&gist=649d51907c2612c310eb627a0c863399
https://play.rust-lang.org/?version=stable&mode=debug&edition=2024&gist=649d51907c2612c310eb627a0c863399
https://hackmd.io/h9YBnIbaRSCD7Ej6hUpF_w
https://rust-lang.github.io/rfcs/1327-dropck-param-eyepatch.html
https://rust-lang.github.io/rfcs/1327-dropck-param-eyepatch.html
https://rust-lang.github.io/rfcs/1238-nonparametric-dropck.html#unguarded-escape-hatch
https://rust-lang.github.io/rfcs/1238-nonparametric-dropck.html#unguarded-escape-hatch
https://rust-lang.zulipchat.com/#narrow/stream/144729-t-types/topic/Perma-unstable.20status.20of.20.60.23.5Bmay_dangle.5D.60
https://rust-lang.zulipchat.com/#narrow/stream/144729-t-types/topic/Perma-unstable.20status.20of.20.60.23.5Bmay_dangle.5D.60
https://rust-lang.zulipchat.com/#narrow/stream/144729-t-types/topic/Perma-unstable.20status.20of.20.60.23.5Bmay_dangle.5D.60
https://github.com/rust-lang/rust/issues/76367
https://github.com/rust-lang/rust/issues/99408
https://doc.rust-lang.org/nomicon/dropck.html#an-escape-hatch
https://doc.rust-lang.org/nomicon/dropck.html#an-escape-hatch
https://github.com/rust-lang/rfcs/pull/3417
https://crates.io/crates/scopeguard
https://docs.rs/scopeguard/latest/src/scopeguard/lib.rs.html#287
https://docs.rs/scopeguard/latest/src/scopeguard/lib.rs.html#287
https://github.com/rust-lang/rust/issues/91377#issuecomment-993875185
https://github.com/rust-lang/rust/issues/91377#issuecomment-993875185
https://github.com/CAD97/generativity/pull/16
https://blog.rust-lang.org/2022/08/05/nll-by-default/
https://blog.rust-lang.org/2022/08/05/nll-by-default/
https://github.com/rust-lang/polonius
https://rust.godbolt.org/z/vhMjKGbz3
https://github.com/rust-lang/rust/pull/139080

[51] [Online]. Available: https://blog.m-ou.se/super-let#a-potential-

extension

[52] [Online]. Available: https://github.com/ArhanChaudhary/generativity-

pattern-rs/blob/main/src/7-nonunifiable_proposal.rs

[53] [Online]. Available: https://play.rust-lang.org/?version=stable&mode=

debug&edition=2024&gist=47b36de838eaeeebe236e2f3b4aa279b

206

https://blog.m-ou.se/super-let#a-potential-extension
https://blog.m-ou.se/super-let#a-potential-extension
https://github.com/ArhanChaudhary/generativity-pattern-rs/blob/main/src/7-nonunifiable_proposal.rs
https://github.com/ArhanChaudhary/generativity-pattern-rs/blob/main/src/7-nonunifiable_proposal.rs
https://play.rust-lang.org/?version=stable&mode=debug&edition=2024&gist=47b36de838eaeeebe236e2f3b4aa279b
https://play.rust-lang.org/?version=stable&mode=debug&edition=2024&gist=47b36de838eaeeebe236e2f3b4aa279b

207

Qter: the Human Friendly Rubik’s Cube Computer
Arhan Chaudhary, Henry Rovnyak, Asher Gray

Abstract. In this paper/report/whatever, we propose a computer architec

ture called Qter that allows humans to perform computations by manipulating

Rubik’s Cube by hand. It includes a “machine code” for humans called Q

and a high-level programming language called QAT that compiles to Q. The

system also applies to other permutation puzzles, such as the 4x4, Pyraminx, or

Megaminx. We also present a program we call the Qter Architecture Solver that

executes on a classical computer to discover Qter architectures on arbitrary

puzzles.

https://github.com/ArhanChaudhary/qter/

208

https://github.com/ArhanChaudhary/qter/

Acknowledgments
We extend our sincere thanks to Tomas Rokicki for personally providing us key

insight into Rubik’s Cube programming techniques throughout the past year. Qter

would not have been possible without his guidance. We are immensely grateful

for his time.

We also extend our gratitude to Ben Whitmore for helping us ideate the initial

design of the Qter Architecture Solver.

209

Contents
1) Introduction . ⁠211

1.1) Background . ⁠213

2) What is Qter? . ⁠218

2.0.1) Addition . ⁠219

2.0.2) Bigger numbers . ⁠220

2.0.3) Branching . ⁠221

2.0.4) Multiple numbers . ⁠221

2.1) Q language . ⁠224

2.1.1) Logical instructions . ⁠225

2.2) QAT language . ⁠229

2.2.1) Global variables . ⁠231

2.2.2) Basic instructions . ⁠232

2.2.3) Metaprogramming . ⁠233

2.2.3.a) Defines . ⁠233

2.2.3.b) Macros . ⁠233

2.2.3.c) Lua Macros . ⁠237

2.2.3.d) Importing . ⁠238

2.2.4) Standard library . ⁠239

2.3) Memory tapes . ⁠242

3) Qter Architecture Solver . ⁠246

3.1) Introduction . ⁠246

3.1.1) Group theory . ⁠246

3.1.2) Permutation groups . ⁠249

3.1.3) Parity and Orientation sum . ⁠253

3.1.4) Cycle structures . ⁠259

3.1.5) Orientation and parity sharing . ⁠262

3.1.6) What is the Qter Architecture Solver? . ⁠263

3.2) Cycle Combination Finder . ⁠264

3.2.1) Beginning with primes . ⁠265

3.2.2) Generalizing to composites . ⁠265

3.2.3) Combining multiple cycles . ⁠266

3.3) Cycle Combination Solver . ⁠267

210

3.3.1) Optimal solving background . ⁠267

3.3.2) Tree searching . ⁠268

3.3.3) Pruning . ⁠270

3.3.4) Pruning table design . ⁠273

3.3.4.a) Symmetry reduction . ⁠273

3.3.4.b) Pruning table types . ⁠278

3.3.4.c) Pruning table compression . ⁠279

3.3.5) IDA* optimizations . ⁠279

3.3.5.a) SIMD . ⁠279

3.3.5.b) Canonical sequences . ⁠280

3.3.5.c) Sequence symmetry . ⁠283

3.3.5.d) Pathmax . ⁠285

3.3.5.e) Parallel IDA* . ⁠286

3.3.6) Larger twisty puzzles . ⁠289

3.3.7) Movecount Coefficient Calculator . ⁠290

3.3.8) Re-running with fixed pieces . ⁠290

4) Conclusion . ⁠291

5) Appendix A: GAP programming . ⁠292

1) Introduction
The Rubik’s Cube.

We’ve all seen it before; it is one of the most recognizable objects on Planet

Earth. But do you know how to solve one? If you’re the average person, you

211

probably don’t, but it’s actually much easier than you think. Instructions for

how to solve one can fit into just two pages [1]—that’s only 4% of the length

of this article! But what if I told you that “solving” was only scratching the

surface of things that you can do with a Rubik’s Cube. It’s like painting on a

canvas with only white paint: you can make endless varieties of strokes and

swirls, but it always has the same result: a blank canvas—a solved cube. It turns

out that there’s a whole world of color out there, and we are ready to show it

to you.

What if I gave you a different set of Rubik’s Cube instructions, not for solving

it, but perhaps for something else. You don’t need to know how to read this,

for we will teach you later…

1 | input "Which Fibonacci number to calculate:"

 B2 U2 L F' R B L2 D2 B R' F L

 max-input 8

2 | solved-goto UFR 14

3 | D L' F L2 B L' F' L B' D' L'

4 | L' F' R B' D2 L2 B' R' F L' U2 B2

5 | solved-goto UFR 15

6 | repeat until DL DFL solved

 L U' B R' L B' L' U'

 L U R2 B R2 D2 R2 D'

7 | L' F' R B' D2 L2 B' R' F L' U2 B2

8 | solved-goto UFR 16

9 | repeat until FR DRF solved

 D' B' U2 B D' F' D L' D2

 F' R' D2 F2 R F2 R2 U' R'

10 | L' F' R B' D2 L2 B' R' F L' U2 B2

11 | solved-goto UFR 17

12 | repeat until UF solved

 B R2 D' R B D F2 U2 D'

 F' L2 F D2 F B2 D' L' U'

13 | goto 4

14 | halt "The number is: 0"

15 | halt until DL DFL solved

 "The number is"

 L D B L' F L B' L2 F' L D'

212

16 | halt until FR DRF solved

 "The number is"

 F2 L2 U2 D' R U' B L' B L' U'

17 | halt until UF solved

 "The number is"

 U L' R' F' U' F' L' F2 L U R

…but if you repeat the “input” scramble 𝑛 times, follow the instructions from

top to bottom, and reach the “halt” instruction, your Rubik’s Cube will not be

solved, but rather hold a very special scramble. If you repeat the halt scramble

on it over and over again, the cube will actually become solved. How many

times do you have to repeat it until it becomes solved? The 𝑛th Fibonacci

number times. You just used your Rubik’s Cube as a computer. But how is that

even possible?

1.1) Background
Before we can explain how to turn a Rubik’s Cube into a computer, we have to

explain what a Rubik’s Cube is and the fundamental mathematics behind how

it works. First, a Rubik’s Cube is made out of three kinds of pieces: Corners,

Edges, and Centers.

213

Corners Edges Centers

You can see that the centers are attached to each other by the core and are only

able to rotate in place. This allows us to treat the centers as a fixed reference

frame to tell whether or not a sticker is on the correct side. For example, if we

have the following scramble,

it may look as if the centers are the only thing unsolved, but in fact we would

actually consider everything else to be unsolved. The reason is that all of the

stickers are different from the center on the same side as it. Next, people who

are beginners at solving Rubik’s Cubes often make the mistake of solving

individual stickers instead of whole pieces.

214

If someone does this, then they haven’t actually made progress towards a

solution because the stickers on the pieces move together, which means that all

of the pieces on the green face in the example given will have to be reshuffled

to bring the rest of the stickers to their correct faces. Instead, it’s better to solve

a full “layer” (3x3x1 block), because all of the pieces are in their correct spots

and won’t need to be moved for the entire rest of the solve. The takeaway

being that in general, we need to think about the cube in terms of pieces rather

than in terms of stickers.

Now, we need some way to notate scrambles and solutions on a Rubik’s Cube.

We will use the conventional “Singmaster Notation” which is standard in the

Rubik’s Cube solving community [2]. First, we will name the six sides of a

Rubik’s Cube Up (U), Down (D), Right (R), Left (L), Front (F), and Back (B). Then,

we will let the letter representing each face represent a clockwise turn about

that face.

215

U D R

L F B

To represent double turns or counterclockwise turns, we append a 2 or a '

respectively to the letter representing the face.

U U2 U’

Here is a full table of all 18 moves for reference:

216

◌

U D R L F B

◌2

◌'

It may look like we’re forgetting some moves. After all, there are three layers

that you can turn, not just two, and we haven’t given names to turns of the

three middle slices. However, we don’t actually need to consider them because

“slice” turns can be written in terms of the 18 “face” turns.

?? R’ L

Those two cube states are actually the same because if you take the first cube

and rotate it so that the green center is in front and the white center is on top

again, we would see that it is exactly the same as the second cube. Since we’re

using the centers as a reference point, we can consider these two cube states

to be exactly the same. Slice turns do have names, but we don’t need to care

about them for the purpose of this paper.

Another thing that we will need to name are the pieces of a Rubik’s Cube. To

do this, we can simply list the sides that the piece has stickers on. For example,

217

we can talk about the “Up, Front, Right” or UFR corner, or the “Front, Left” —

FL — edge.

UFR

FL

This system is able to uniquely identify all of the pieces. Finally, a sequence of

moves to apply to a Rubik’s Cube is called an algorithm. For example, (L2 D2

L’ U’ L D2 L’ U L’) is an algorithm that speed cubers memorize to help them

at the very end of a solution when almost every piece is solved. It performs a

three-cycle of the UBL, DBL, and DBR corners:

L2 D2 L’ U’ L D2 L’ U L’

2) What is Qter?
Now that you understand what a Rubik’s Cube is and the fundamental

mechanics, we can explain the ideas of using it to perform computation. The

most important thing for a computer to be able to do is represent numbers.

Let’s take a solved cube and call it “zero”.

The fundamental unit of computation in Qter is an algorithm, or a sequence of

moves to apply to the cube. The fundamental unit of computation on a classical

computer is addition, so let’s see what happens when we apply the simplest

algorithm, just turning the top face, and call it addition by one. What does this

buy us?

218

We can call this new state “one”. Since we want the algorithm (U) to represent

addition, perhaps applying (U) again could transition us from state “one” to

state “two”, and again to state “three”, and again to state “four”?

When we apply (U) the fourth time, we find that it returns back to state “zero”.

This means that we can’t represent every possible number with this scheme.

We should have expected that, because the Rubik’s Cube has a finite number

of states whereas there are an infinite amount of numbers. This doesn’t mean

that we can’t do math though, we just have to treat numbers as if they “wrap

around” at four. This is analogous to the way that analog clocks wrap around

after twelve, and this form of math is well-studied under the fancier name

“modular arithmetic”.

2.0.1) Addition

Can we justify this way of representing numbers? Let’s consider adding “two”

to “one”. We reach the “two” state using the algorithm (U U), so if we apply

that algorithm to the “one” state, we will find the cube in the same state as if

we applied ((U) (U U)), or (U U U), which is exactly how we reach the state

“three”. It’s easy to see that associativity of moves makes addition valid in this

scheme. What if we wanted to add “three” to “two”? We would expect a result

of “five”, but since the numbers wrap around upon reaching four, we would

actually expect to reach the state of “one”. You can try on your own Rubik’s

Cube and see that it works.

219

What if we want to perform subtraction? We know that addition is performed

using an algorithm, so can we find an algorithm that adds a negative number?

Let’s consider the state that represents “one”. If we subtract one, we would

expect the cube to return to state “zero”. The algorithm that brings the cube

from state “one” to state “zero” is (U’). This is exactly the inverse of our initial

(U) algorithm. If we want to subtract two, we can simply subtract one twice as

before: (U’ U’).

You may notice that subtracting one is equivalent to adding three, because (U’)

is equivalent to (U U U). It may seem like this is a contradiction, but it actually

isn’t: Adding three to one gives four, but since four wraps around to zero, our

result is actually zero, as if we subtracted one. In general, any number can be

seen as either positive or negative: −1 = 3, −2 = 2, and −3 = 1. You can manually

verify this yourself if you like. Interestingly, this is how signed arithmetic

works in a classical computer, but that’s irrelevant for our purposes.

2.0.2) Bigger numbers

If the biggest number Qter could represent was three, it would not be an

effective tool for computation. Thankfully, the Rubik’s Cube has 43 quintillion

states, leaving us lots of room to do better than just four. Consider the algo

rithm (R U). What if instead of saying that (U) adds one, we say that (R U) adds

one? We can play the same game using this algorithm. The solved cube repre

sents zero, (R U) represents one, (R U R U) represents two, etc. This algorithm

performs a much more complicated action on the cube, so we should be able

to represent more numbers. In fact, the maximum number we can represent

this way is 104, and the cube re-solves itself after 105 iterations. We would say

that the algorithm has order 105.

“Zero” “One” “Two” … “104” “105”

There are still lots of cube states left; can we do better? Unfortunately, it’s

only possible to get to 1259, wrapping around on the 1260th iteration. You can

220

try this using the algorithm R U2 D' B D'. This has been proven to be the

maximum order possible [3].

2.0.3) Branching

The next thing that a computer must be able to do is branch: without it we

can only do addition and subtraction and nothing else. If we want to perform

loops or only execute code conditionally, qter must be able to change what

it does based on the state of the cube. For this, we introduce a solved-goto

instruction.

If you perform R U on a cube a bunch of times without counting, it’s essentially

impossible for you to tell how many times you did the algorithm by just looking

at the cube. With one exception: If you did it zero times, then the cube is solved

and it’s completely obvious that you did it zero times. Since we want qter code

to be executable by humans, the solved-goto instruction asks you to jump to

a different location of the program only if the cube is solved. Otherwise, you

simply go to the next instruction. This is functionally equivalent to a “jump-

if-zero” instruction which exists in most computer architectures.

(R U) × ??? (R U) × 0

2.0.4) Multiple numbers

If you think about what programs you could actually execute with just a single

number and a “jump if zero” instruction, it would be almost nothing. It would

be impossible for solved-goto jumps to be taken without erasing all data

stored on the cube. What would be wonderful is if we could represent multiple

numbers on the cube at the same time.

Something cool about Rubik’s Cubes is that it’s possible for a long sequence

of moves to only affect a small part of the cube. For example, we showed in

221

the introduction an algorithm (L2 D2 L’ U’ L D2 L’ U L’) which cycles three

corners. Therefore, it should be possible to represent two numbers using two

algorithms that affect distinct “areas” of the cube.

The simplest example of this are the algorithms (U) and (D’). You can see that

(U) and (D’) both allow representing numbers up to three, and since they affect

different areas of the cube, we can represent two different numbers on the cube

at the same time. We call these “registers”, as an analogy to the concept in

classical computing.

(0, 0) (1, 0) (0, 1) (1, 1) (3, 2) (1, 3)

As described, solved-goto would only branch if the entire cube is solved,

however since each algorithm affects a distinct area of the cube, it’s possible for

a human to determine whether a single register is zero, by inspecting whether

a particular section of the cube is solved. Remember that “solved” means that

all of the stickers are the same color as the corresponding center.

(0, ?) (?, 0)

For the first cube in the above figure, it’s easy to tell that the first register is zero

because the entire top layer of the cube is solved. We can modify the “solved-

goto” instruction to input a list of pieces, all of which must be solved for the

branch to be taken, but not necessarily any more. The following illustrates a

successful solved-goto UF UFR instruction that would require jumping to a

222

different part of the program, as well as an unsuccessful one that would require

going to the next instruction.

Can we do better than two registers with four states? In fact we can! If you

try out the algorithms R' F' L U' L U L F U' R and U F R' D' R2 F R'

U' D, you can see that they affect different pieces and both have order ninety.

You may notice that they both twist the DBL corner; this is not a problem

because they are independently decodable even ignoring that corner. One of

the biggest challenges in the development of qter has been finding sets of

algorithms with high orders that are all independently decodable. This is the

fundamental problem that the Qter Architecture Solver attempts to solve, and

will be discussed in later sections.

R’ F’ L U’ L U L F U’ R (1, 0) U F R’ D’ R2 F R’ U’ D (0, 1)

Another fun thing that tweaking the “solved-goto” instruction in this way

allows us to do is test whether the current value of a register is divisible by

a particular set of numbers. For example, returning to the register defined by

𝑅𝑈 , we can test divisibility by three by looking at the the UFR corner.

223

R U (R U)3

You can see that that piece resolves itself before the rest of the register does,

allowing us to check divisibility by three. This will be further elaborated on in

Section 3.1.

All of the concepts described actually apply to other so-called “twisty puzzles”,

for example the Pyraminx, which is essentially a pyramid shaped Rubik’s

Cube. Only the notation and algorithms would have to change. For the rest of

the paper, we will just look at the 3x3x3 because that is what most people are

familiar with.

This is in fact all that’s necessary to do things like calculating Fibonacci and

performing multiplication. So now, how can we represent Qter programs?

2.1) Q language
The Q language is Qter’s representation of an executable program. The file

format was designed in such a way that, with only basic Rubik’s Cube knowl

edge, a human can physically manipulate a twisty puzzle to execute a program

and perform a meaningful computation.

Q files are expected to be read from top to bottom. Each line indicates an

instruction, the simplest of which is just an algorithm to perform on the cube.

For example:

Puzzles

A: 3x3

1 | U' R2

2 | L D'

...

224

The Puzzles declaration specifies the types of twisty puzzles used. In this

example, it is declaring that you must start with a 3x3x3 cube, and that it

has the name “A”. The name is unimportant in this example, but becomes

important when operating on multiple cubes. The instructions indicate that

you must perform the algorithm U' R2 L D' on the Rubik’s Cube. You must

begin with the cube solved before following the instructions.

The Q file format also includes special instructions that involve the twisty

puzzle but require additional logic. These logical instructions are designed to

be simple enough for humans to understand and perform.

2.1.1) Logical instructions

• goto <number>

Jump to the specified line number instead of reading on to the next line. For

example:

Puzzles

A: 3x3

1 | U' R2

2 | L D'

3 | goto 1

...

Indicates an infinite loop of performing (U’ R2 L D’) on the Rubik’s Cube. After

performing the algorithm, the goto instruction requires you to jump back to

line 1 where you started.

• solved-goto <number> <positions...>

If the specified positions on the puzzle each contain their solved piece, then

jump to the line number specified as if it was a goto instruction. Otherwise, do

nothing and go to the next instruction. Refer to Section 2.0.4 for more details.

For example:

Puzzles

A: 3x3

225

1 | U' R2

2 | solved-goto 4 UFR UF

3 | goto 1

4 | L D'

...

indicates performing (U’ R2) and then repeatedly performing (U’ R2) until the

UFR corner position and UF edge position contain their solved pieces. Then,

perform (L D’) on the Rubik’s Cube.

• solve

Solve the puzzle using your favorite method. Logically, this instruction zeroes

out all registers on the puzzle.

• repeat until <positions...> solved <algorithm>

Repeat the given algorithm until the given positions contain their solved

pieces. Logically, this is equivalent to

N | solved-goto N+3 <positions...>

N+1 | <algorithm>

N+2 | goto N

N+3 | ...

but is easier to read and understand. This pattern occurs enough in Q programs

that it is worth defining an instruction for it.

• input <message> <algorithm> max-input <number>

This instruction allows taking in arbitrary input from a user which will be

stored and processed on the puzzle. To give an input, repeat the given algo

rithm “your input” number of times. For example:

Puzzles

A: 3x3

1 | input "Pick a number"

 R U R' U'

 max-input 5

...

226

To input the number two, execute the algorithm ((R U R’ U’) (R U R’ U’)) on the

Rubik’s Cube. Notice that if you try to execute (R U R’ U’) six times, the cube

will return to its solved state as if you had inputted the number zero. Thus,

your input number must not be greater than five, and this is shown with the

max-input 5 syntax.

If a negative input is meaningful to the program you are executing, you can

input negative one by performing the inverse of the algorithm. For example,

negative two would be inputted as ((U R U’ R’) (U R U’ R’)).

• halt <message> [<algorithm> counting-until <positions...>]

This instruction terminates the program and gives an output, and it is similar

to the input instruction but in reverse. To decode the output of the program,

repeat the given algorithm until the given positions given are solved. The

number of repetitions it took to solve the pieces, along with the specified

message, is considered the output of the program. For example:

Puzzles

A: 3x3

1 | input "Choose a number"

 R U R' U'

 max-input 5

2 | halt "You chose"

 U R U' R'

 counting-until UFR

In this example, after performing the input and reaching the halt instruction,

you would have to repeat U R U' R' until the UFR corner is solved. For example,

if you inputted the number two by performing (R U R' U') (R U R' U'), the

expected output will be two, since you have to perform U R U' R' twice to

solve the UFR corner. Therefore, the expected output of the program is “You

chose 2”.

If the program does not require giving a numeric output, then the algorithm

may be left out. For example:

227

Puzzles

A: 3x3

1 | halt "I halt immediately"

• print <message> [<algorithm> counting-until <positions...>]

This is an optional instruction that you may choose to ignore. The print in

struction serves as a secondary mechanism to produce output without exiting

the program. The motivation stems from the fact that, without this instruction,

the only form of meaningful output is the single number produced by the halt

instruction.

To execute this instruction, repeat the given algorithm until the positions

are solved, analogous to the halt instruction. The number of repetitions this

took is then the output of the print statement. Then, you must perform the

inverse of the algorithm the same number of times, undoing what you just

did and returning the puzzle to the state it was in before executing the print

instruction. For example:

Puzzles

A: 3x3

1 | R U R2 B2 U L U' L' D' R' D R B2 U2

2 | print "This should output ten:"

 R U counting-until UFR UF

3 | halt "This should also output ten:"

 R U counting-until UFR UF

Like the halt instruction, including only a message is allowed. In this case,

you can skip this instruction as there is nothing to do. For example:

Puzzles

A: 3x3

1 | print "Just a friendly debugging message :-)"

...

• switch <letter>

228

This instruction allows Qter to support using multiple puzzles in a single

program. It tells you to put down your current puzzle and pick up a different

one, labeled by letter in the Puzzles declaration. It is important that you do

not rotate the puzzle when setting it aside or picking it back up. For example:

Puzzles

A: 3x3

B: 3x3

1 | U

2 | switch B

3 | R

...

This program requires two Rubik’s Cubes to execute. The instructions indicate

performing U on the first Rubik’s Cube and then R on the second. When the

program starts, you are expected to be holding the first cube in the list. Having

multiple Rubik’s Cubes is helpful for when a single one doesn’t provide enough

storage space for what you wish to do.

2.2) QAT language
Q would be very difficult to create programs in by hand, similarly to how it

is difficult to write programs in machine code directly. Therefore, we created

a high-level programming language called QAT (Qter Assembly Text) that is

designed to make it easy to write meaningful Qter programs. To run a program

in a traditional programming language, you compile your source code into

machine code that the computer processor then interprets and executes. The

Qter compilation pipeline works similarly.

229

To run your first QAT program, you will first need to install Cargo (talk about

installing Cargo) and then the qter compiler executable through the command

line: cargo install qter. Once set up, create a file named average.qat with

the following program code.

.registers {

 A, B <- 3x3 builtin (90, 90)

}

 -- Calculate the average of two numbers

 input "First number:" A

 input "Second number:" B

 print "Calculating average..."

sum_loop:

 add A 1

 add B 89

 solved-goto B found_sum

 goto sum_loop

found_sum:

230

 add A 1

divide_by_2:

 add A 89

 solved-goto A stop

 add A 89

 solved-goto A stop

 add B 1

 goto divide_by_2

stop:

 halt "The average is" B

To compile this program, run qter compile average.qat to generate

average.q. To execute it, run qter interpret average.q and enter your

favorite two numbers into the prompts.

2.2.1) Global variables

Every QAT program begins with a .registers statement, used to declare

global variables named registers. The statement in the above average program

declares two global registers of size 90 to be stored on a Rubik’s Cube. That is,

additions operate modulo 90: incrementing a register of value 89 resets it back

to 0, and decrementing a register of value 0 sets it to 89.

The builtin keyword refers to the fact that valid register sizes are specified

in a puzzle-specific preset. For the Rubik’s Cube, all builtin register sizes are

in src/qter_core/puzzles/3x3.txt. Unlike tradi

tional computers, qter is only able to operate with small and irregular register

sizes.

You can choose to use larger register sizes at the cost of requiring more puzzles.

For example, 1260 is a valid builtin register size that needs an entire Rubik’s

Cube to declare. If your program wants access to more than one register, it

would have to use multiple Rubik’s Cubes for more memory.

.registers {

 A <- 3x3 builtin (1260)

 B <- 3x3 builtin (1260)

 ...

}

231

To access the remainder of a register as explained in Section 2.0.4, you can

write, for example, A%3 to access the remainder after division by three.

The .registers statement is also used to declare memory tapes, which help

facilitate local variables, call stacks, and heap memory. This idea will be

expanded upon in Section 2.3.

2.2.2) Basic instructions

The basic instructions of the QAT programming language mimic an assembly-

like language. If you have already read Section 2.1, notice the similarities with

QAT.

• add <variable> <number>

Add a constant number to a variable. This is the only way to change the value

of a variable.

• goto <label>

Jump to a label, an identifier used to mark a specific location within code. The

syntax for declaring a label follows the common convention amongst assembly

languages:

infinite_loop:

 goto infinite_loop

• solved-goto <variable> <label>

Jump to a label if the specified variable is zero. The name of this instruction is

significant in the Q file format.

• input <message> <variable>

Ask the user for numeric input, which will be added to the given variable.

• print <message> [<variable>]

Output a message, optionally followed by a variable’s value.

• halt <message> [<variable>]

232

Terminate the program with a message, optionally followed by a variable’s

value.

2.2.3) Metaprogramming

As described, QAT is not much higher level than Q… Ideally we need some

kind of construction to allow abstraction and code reuse. Due to the fact

that Rubik’s Cubes have extremely limited memory, we cannot maintain a

call stack in the way that a classical computer would. Therefore, we cannot

incorporate functions into QAT. Instead, we have a rust-inspired macro system

that operates through inlining. Note that this macro system is unimplemented

at the time of writing.

2.2.3.a) Defines

The simplest form of this provided by QAT is the simple .define statement,

allowing you to define a variety of global constants.

.define PI 3 -- Global Integer

.define ALSO_PI $PI -- Reference a previous define statement

.define ALSO_A A -- Save an identifier

.define DO_ADDITION { -- Name a whole code block

 add A 10

}

add A $PI

add $ALSO_A $ALSO_PI

$DO_ADDITION

-- `A` will store the number 16

However, this is most likely too simple for your use case…

2.2.3.b) Macros

Macros roughly have the following syntax:

.macro <name> {

 (<pattern>) => <expansion>

 (<pattern>) => <expansion>

 ...

}

233

As a simple example, consider a macro to increment a register:

.macro inc {

 ($R:reg) => add $R 1

}

You would invoke it like

inc A

and it would be transformed at compile time to

add A 1

In the macro definition, $R represents a placeholder that any register could

take the place of.

Now consider a more complicated macro, one to move the value of one register

into another:

.macro move {

 ($R1:reg to $R2:reg) => {

 loop:

 solved-goto $R1 finished

 dec $R1

 inc $R2

 goto loop

 finished:

 }

}

You would invoke it like

move A to B

The word to is simply an identifier that must be matched for the macro

invocation to compile. It allows you to make your macros read like english.

This invocation would be expanded to

loop:

 solved-goto A finished

 dec A

 inc B

234

 goto loop

finished:

which would be expanded again to

loop:

 solved-goto A finished

 sub A 1

 add B 1

 goto loop

finished:

The expansion of sub will depend on the size of register A, and we’ll see how

to define the sub macro later.

Labels in macros will also be unique-ified so that if you invoke move twice,

the labels will not conflict. This will also prevent you from jumping inside the

macro invocation from outside:

move A to B

goto finished -- Error: the `finished` label is undefined

Already, we have created a powerful system for encapsulating and abstracting

code, but we still have to perform control flow using manual labels and

jumping. Can we extend our macro system to allow defining control flow? In

fact, we can! We can define an if macro like

.macro if {

 (solved $R:reg $code:block) => {

 solved-goto $R do_if

 goto after_if

 do_if:

 $code

 after_if:

 }

}

and we can invoke it like

235

if solved A {

 -- Do something

}

which would be expanded to

 solved-goto A do_if

 goto after_if

do_if:

 -- Do something

after_if:

Here, $code is a placeholder for an arbitrary block of code, which allows

defining custom control flow. The unique-ification of labels also covers code

blocks, so the following wouldn’t compile:

if solved A {

 goto do_if -- Error: the `do_if` label is undefined

}

Let’s try defining a macro that executes a code block in an infinite loop:

.macro loop {

 ($code:block) => {

 continue:

 $code

 goto continue

 break:

 }

}

We can invoke it like

loop {

 inc A

}

but how can we break out of the loop? It would clearly be desirable to be able

to goto the continue and break labels that are in the macro definition, but we

can’t do that. The solution is to mark the labels public, like

236

.macro loop {

 ($code:block) => {

 !continue:

 $code

 goto continue

 !break:

 }

}

The exclamation mark tells the compiler that the label should be accessible to

code blocks inside the macro definition, so the following would be allowed:

loop {

 inc A

 if solved A {

 goto break

 }

}

However, the labels are not public to the surroundings of the macro to preserve

encapsulation.

loop {

 -- Stuff

}

goto break -- Error: the `break` label is undefined

2.2.3.c) Lua Macros

For situations where macros as described before aren’t expressive enough, you

can embed programs written in Lua into your QAT code to enable compile-

time code generation. Lets see how the sub macro can be defined:

.start-lua

 function subtract_order_relative(r1, n)

 return { { "add", r1, order_of_reg(r1) - n } }

 end

end-lua

.macro sub {

237

 ($R:reg $N:int) => lua subtract_order_relative($R, $N)

}

lua is a special statement that allows you to call a lua function at compile-

time, and the code returned by the function will be spliced in its place. Lua

macros should return a list of instructions, each of which is itself a list of the

instruction name and arguments.

Here, invoking the sub macro will invoke the lua code to calculate what the

sub macro should actually emit. In this example, the lua macro accesses the

size of the register to calculate which addition would cause it to overflow and

wrap around, having the effect of subtraction. It would be impossible to do

that with simple template-replacing macros.

In general, you can write any lua code that you need to in order to make what

you need to happen, happen. There are a handful of extra functions that QAT

gives Lua access to.

big(number) -> bigint -- Takes in a standard lua number and

returns a custom bigint type that is used for register orders and

instructions

order_of_reg(register) -> bigint -- Inputs an opaque reference to

a register and returns the order of that register

If the lua code throws an error, compilation will fail.

You can also invoke lua code in define statements:

.start-lua

 function bruh()

 return 5

 end

end-lua

.define FIVE lua bruh()

2.2.3.d) Importing

Finally, it is typically desirable to separate code between multiple files. QAT

provides an import statement that brings all defines and macros of a different

QAT file into scope, and splices any code defined in that file to the call site.

238

-- file-a.qat

.registers {

 A <- 3x3 builtin (1260)

}

add A 1

import "./file-b.qat"

thingy A

halt A

-- file-b.qat

add A 12

.macro thingy {

 ($R:reg) => {

 add $R 10

 }

}

Compiling and executing file-a.qat would print 23.

2.2.4) Standard library

Lucky for you, you get a lot of macros built into the language! The

QAT standard library is defined at [src/qter_core/prelude.qat](src/qter_core/

prelude.qat) and you can reference it if you like.

sub <register> <number>

Subtract a number from a register

inc <register>

Increment a register

dec <register>

Decrement a register

move <register1> to <register2>

239

Zero out the first register and add its contents to the second register

set <register1> to <register2>

Set the contents of the first register to the contents of the second while zeroing

out the contents of the second

set <register> to <number>

Set the contents of the first register to the number specified

if solved <register> <{}> [else <{}>]

Execute the code block if the register is zero, otherwise execute the else block

if supplied

if not-solved <register> <{}> [else <{}>]

Execute the code block if the register is not zero, otherwise execute the else

block if supplied

if equals <register> <number> <{}> [else <{}>]

Execute the code block if the register equals the number supplied, otherwise

execute the else block if supplied

if not-equals <register> <number> <{}> [else <{}>]

Execute the code block if the register does not equal the number supplied,

otherwise execute the else block if supplied

if equals <register1> <register2> using <register3> <{}> [else

<{}>]

Execute the code block if the first two registers are equal, while passing in a

third register to use as bookkeeping that will be set to zero. Otherwise executes

the else block if supplied. All three registers must have equal order. This is

validated at compile-time. The equality check is implemented by decrementing

both registers until one of them is zero, so the bookkeeping register is used to

save the amount of times decremented.

if not-equals <register1> <register2> using <register3> <{}>

[else <{}>]

240

Execute the code block if the first two registers are not equal, while passing in a

third register to use as bookkeeping that will be set to zero. Otherwise executes

the else block if supplied. All three registers must have equal order. This is

validated at compile-time. The equality check is implemented identically to if

equals ... using

loop <{}>

!continue

!break

Executes a code block in a loop forever until the break label or a label outside

of the block is jumped to. The break label will exit the loop and the continue

label will jump back to the beginning of the code block

while solved <register> <{}>

!continue

!break

Execute the block in a loop while the register is zero

while not-solved <register> <{}>

!continue

!break

Execute the block in a loop while the register is not zero

while equals <register> <number> <{}>

!continue

!break

Execute the block in a loop while the register is equal to the number provided

while not-equals <register> <number> <{}>

!continue

!break

Execute the block in a loop while the register is not equal to the number

provided

while equals <register1> <register2> using <register3> <{}>

!continue

!break

241

Execute the block in a loop while the two registers are equal, using a third

register for bookkeeping that will be zeroed out at the start of each iteration.

while not-equals <register1> <register2> using <register3> <{}>

!continue

!break

Execute the block in a loop while the two registers are not equal, using a third

register for bookkeeping that will be zeroed out at the start of each iteration.

repeat <number> [<ident>] <{}>

Repeat the code block the number of times supplied, optionally providing a

loop index with the name specified. The index will be emitted as a .define

statement.

repeat <ident> from <number1> to <number2> <{}>

Repeat the code block for each number in the range [number1, number2)

multiply <register1> <number> at <register2>

Add the result of multiplying the first register with the number provided to

the second register, while zeroing out the first register

multiply <register1> <register2> using <register3>

Multiply the first two registers, storing the result in the first register and

zeroing out the second, while using the third register for bookkeeping. The

third register will be zeroed out. All three registers must be the same order,

which is checked at compile time.

2.3) Memory tapes
Now we’re getting to the more theoretical side, as well as into a design space

that we’re still exploring. Things can easily change.

There are plenty of cool programs one can write using the system described

above, but it’s certainly not Turing complete. The fundamental reason is that

we only have finite memory… For example it would be impossible to write

a QAT compiler in QAT because there’s simply not enough memory to even

store a whole program on a Rubik’s Cube. In principle, anything would be

242

possible with infinite Rubik’s Cubes, but it wouldn’t be practical to give all

of them names since you can’t put infinite names in a program. How can we

organize them instead?

The traditional solution to this problem that is used by classical computers

is pointers. You assign every piece of memory a number and allow that

number to be stored in memory itself. Each piece of memory essentially has a

unique name — its number — and you can calculate which pieces of memory

are needed at runtime as necessary. However, this system won’t work for

qter because we would like to avoid requiring the user to manually decode

registers outside of halting. We allow the print instruction to exist because it

doesn’t affect what the program does and can simply be ignored at the user’s

discretion.

Even if we did allow pointers, it wouldn’t be a foundation for the usage of

infinite memory. The maximum number that a single Rubik’s Cube could

represent if you use the whole cube for one register is 1259. Therefore, we

could only possibly assign numbers to 1260 Rubik’s Cubes, which would still

not be nearly enough memory to compile a QAT program.

Since our language is so minimal, we can take inspiration from perhaps the

most famous barely-Turing-complete language out there (sorry in advance)…

Brainfuck!! Brainfuck consists of an infinite list of numbers and a single

pointer (stored externally) to the “current” number that is being operated on.

A Brainfuck program consists of a list of the following operations:

• > Move the pointer to the right

• < Move the pointer to the left

• + Increment the number at the pointer

• - Decrement the number at the pointer

• . Output the number at the pointer

• , Input a number and store it where the pointer is

• [Jump past the matching] if the number at the pointer is zero

•] Jump to the matching [if the number at the pointer is non-zero

The similarity to Qter is immediately striking and it provides a blueprint for

how we can support infinite cubes. We can give Qter an infinite list of cubes

243

called a memory tape and instructions to move left and right, and that would

make Qter Turing-complete. Now Brainfuck is intentionally designed to be

a “Turing tarpit” and to make writing programs as annoying as possible, but

we don’t want that. For the sake of our sanity, we support having multiple

memory tapes and naming them, so you don’t have to think about potentially

messing up other pieces of data while traversing for something else. To model

a tape in a hand-computation of a qter program, one could have a bunch of

Rubik’s Cubes on a table laid out in a row and a physical pointer like an arrow

cut out of paper to model the pointer. One could also set the currently pointed-

to Rubik’s Cube aside.

Lets see how we can tweak Q and QAT to interact with memory tapes. First,

we need a way to declare them in both languages. In Q, you can write

Puzzles

tape A: 3x3

to mark A as a tape of 3x3s rather than just one 3x3. In QAT, you can write

.registers {

 tape X ~ A, B ← 3x3 builtin (90, 90)

}

to declare a memory tape X of 3x3s with the 90/90 architecture. Equivalently,

you can replace the tape keyword with the ‘📼’ emoji in both contexts:

Puzzles

📼 A: 3x3

.registers {

 📼 X ~ A, B ← 3x3 builtin (90, 90)

}

In Q, we need syntax to move the tape left and right, equivalent to < and > in

Brainfuck. As with multiple Rubik’s Cubes, tapes are switched between using

the switch instruction, and any operations like moves or solved-goto will

apply to the currently pointed-to Rubik’s Cube.

• move-left [<number>]

244

Move the pointer to the left by the number of spaces given, or just one space

if not specified

• move-right [<number>]

Move the pointer to the right by the number of spaces given, or just one space

if not specified

In QAT, tapes can be operated on like…

.registers {

 📼 X ~ A, B ← 3x3 builtin (90, 90)

}

add X.A 1 -- Add one to the `A` register of the currently

selected Rubik's Cube on the `X` tape

move-right X 1 -- Move to the right

print "A is" X.A -- Prints `A is 0` because we added one to the

cube on the left

move-left X 1 -- Move to the left

print "A is" X.A -- Prints `A is 1` because this is the puzzle

that we added one to before

We poo-pooed pointers previously, however this system is actually powerful

enough to implement them using QAT’s metaprogramming functionality,

provided that we store the current head position in a register external to the

tape. The following deref macro moves the head to a position specified in the

to register, using the current register to track the current location of the head.

.macro deref {

 ($tape:tape $current:reg $to:reg) => {

 -- Move the head to the zero position

 while not-solved $current {

 dec $current

 move-left $tape

 }

 -- Move the head to `to`

245

 while not-solved $to {

 dec $to

 inc $current

 move-right $tape

 }

 }

}

3) Qter Architecture Solver

3.1) Introduction
Now that we understand how to write programs using Qter, how can we

actually find sets of algorithms that function as registers? For this, it’s time to

get into the hardcore mathematics…

3.1.1) Group theory

First, we have to build a foundation of how we can represent Rubik’s Cubes in

the language of mathematics. That foundation is called group theory. A group is

defined to be a set equipped with an operation (denoted 𝑎𝑏 or 𝑎 · 𝑏) that follows

the following group axioms:

• There exists an identity element 𝑒 such that for any element of the group 𝑎,

𝑎 · 𝑒 = 𝑎.

• For all elements 𝑎, 𝑏, 𝑐, (𝑎 · 𝑏) · 𝑐 = 𝑎 · (𝑏 · 𝑐). In other words, the operation

is associative.

• For each 𝑎 in the group, there exists 𝑎−1 such that 𝑎 · 𝑎−1 = 𝑒. In other

words, every element has an inverse with respect to the group operation.

Importantly, commutativity is not required. So let’s see how this definition

applies to the Rubik’s Cube. To form a group, we need a set, and for the Rubik’s

Cube, this set is all 4.3 · 1019 possible cube states and scrambles, excluding

rotations. For example, the solved state is an element of the set. If you turn

the top face then that’s an element of the set. If you just scramble your cube

randomly and do any sequence of moves, then even that’s part of the set.

246

Next, we need an operation. For the Rubik’s Cube, this will be jamming

together the algorithms that reach the two cube states. We will call this

operation composition because it is very similar to function composition.

R U R’ U’ F L (R U R’ U’) (F L)

=

Now, let’s verify that all of the group axioms hold. First, we need an identity

element. This identity is simply the solved state! Lets verify this, and let 𝐴 be

an arbitrary scramble:

A () (A) () = A

=

Regardless of what the first cube state is, appending the “do nothing” algorithm

will lead to the same cube state. Next, lets verify associativity, letting 𝐴, 𝐵,

and 𝐶 be arbitrary scrambles.

247

A B C (A B) (C) = A B C

=

A B C (A) (B C) = A B C

=

Because of the nature of how jamming together algorithms works, parentheses

can essentially be ignored. Therefore, the composition operation is associative.

Finally we must show that every cube position has an inverse. Intuitively,

we should expect an inverse to exist simply because we can undo whatever

algorithm created the scramble. Here is an algorithm to find the inverse of a

scramble:

function inverse(moves: List<Move>): List<Move> {

 reverse(moves)

 for (move in moves) {

 if move.ends_with("'") {

 remove(`'` from move)

 } else if move.ends_with("2") {

 // Leave it

 } else {

 append(`'` to move)

 }

 }

248

 return moves

}

This works because any clockwise base move X cancels with it’s counterclock

wise pair X’ and vice versa, and any double turn X2 cancels with itself.

R' U2 F L · inverse(R' U2 F L) = (R' U2 F L)(L' F' U2 R)
= R' U2 F F' U2 R
= R' U2 U2 R
= R' R
= ()

Next, it is important to distinguish a cube state from an algorithm to reach that

cube state. We just described the group of Rubik’s cube algorithms but not the

group of Rubik’s cube states. The groups are analagous but not identical: after

all, there are an infinite number of move sequences that you can do, however

there is only a finite number of cube states. We can say that the group of

Rubik’s cube algorithms is an action on the group of Rubik’s cube states. We

will explore this group of Rubik’s cube states next, because it turns out that it is

much more amenable to mathematical analysis and representation inside of a

computer. After all, it would be problematic performance-wise if composition

of Rubik’s cube states was performed by concatenating potentially unbounded

lists of moves, and it doesn’t give us insight into the structure of the puzzle

itself. To show a better way to represent a Rubik’s cube state, I first have to

explain…

3.1.2) Permutation groups

There are lots of other things that can form groups, but the things that we’re

interested in are permutations, which are re-arrangements of items in a set.

For example, we could notate a permutation like

0 1 2 3 4
↓ ↓ ↓ ↓ ↓
2 1 4 3 0

249

where the arrows define the rearrangement. Note that we can have permuta

tions of any number of items rather than just five. We can leave out the top row

of the mapping because it will always be the numbers in order, so we could

notate it 2, 1, 4, 3, 0. We can see that this permutation can also be thought of

as an invertible, or bijective, function between the numbers {0, 1, 2, 3, 4} and

themselves.

So now, lets construct a group. The set of all permutations of a particular

size, five in this example, will be the set representing our group. Then, we

need an operation. Since permutations are basically functions, permutation

composition can simply be function composition!

Permutation composition

𝑎 = 2, 1, 4, 3, 0
𝑏 = 4, 3, 0, 2, 1

↓ ↓ ↓ ↓ ↓
𝑎 ⋅ 𝑏 = 𝑎(4), 𝑎(3), 𝑎(0), 𝑎(2), 𝑎(1)

= 0, 3, 2, 4, 1

From here, the group axioms are trivial. Our identity 𝑒 is the do-nothing

permutation, 0, 1, 2, 3, 4. We know that associativity holds because permuta

tion composition is identical to function composition which is known to be

associative. We know that there is always an inverse because permutations are

bijective mappings and you can simply reverse the arrows to form the inverse:

0 1 2 3 4 0 1 2 3 4
𝑎−1 = ↑ ↑ ↑ ↑ ↑ → ↓ ↓ ↓ ↓ ↓

2 1 4 3 0 4 1 0 3 2

Therefore, permutation composition satisfies all of the group axioms, so it is

a group. Next, there also exists a much cleaner way to notate permutations,

called cycle notation. The way you would write 𝑎 in cycle notation is as

(0, 2, 4)(1)(3). Each item maps to the next item in the list, wrapping around

at a closing parenthesis. The notation is saying that 0 maps to 2, 2 maps to 4,

4 maps to 0 (because of the wraparound), 1 maps to itself, and 3 also maps to

250

itself. This is called “cycle notation” because it shows clearly the underlying

cycle structure of the permutation. 0, 2, and 4 form a three-cycle and 1 and 3

both form one-cycles. It is also conventional to leave out the one-cycles and

to just write down (0, 2, 4).

This notation also provides a simple way to determine exactly how many times

one can exponentiate a permutation for it to equal identity. Since a three-cycle

takes three iterations for its elements to return to their initial spots, you can

compose a three-cycle with itself three times to give identity. In full generality,

we have to take the least common multiple of all of the cycle lengths to give that

number of repetitions. For example, the permutation (0, 1, 2)(3, 4, 5, 6) has a

three-cycle and a four-cycle, and the LCM of three and four is 12, therefore

exponentiating it to the twelfth power gives identity.

A permutation is something that we can easily represent in a computer, but

how can we represent a Rubik’s Cube in terms of permutations? It is quite

simple actually…

A Rubik’s Cube forms a permutation of the stickers! We don’t actually have to

consider the centers because they don’t move, so we would have a permutation

of (9 − 1) · 6 = 48 stickers. We can define the turns on a Rubik’s Cube in terms

of permutations like so [4]:

251

𝑈 = (1, 3, 8, 6)(2, 5, 7, 4)(9, 33, 25, 17)(10, 34, 26, 18)(11, 35, 27, 19)
𝐷 = (41, 43, 48, 46)(42, 45, 47, 44)(14, 22, 30, 38)(15, 23, 31, 39)(16, 24, 32, 40)
𝑅 = (25, 27, 32, 30)(26, 29, 31, 28)(3, 38, 43, 19)(5, 36, 45, 21)(8, 33, 48, 24)
𝐿 = (9, 11, 16, 14)(10, 13, 15, 12)(1, 17, 41, 40)(4, 20, 44, 37)(6, 22, 46, 35)
𝐹 = (17, 19, 24, 22)(18, 21, 23, 20)(6, 25, 43, 16)(7, 28, 42, 13)(8, 30, 41, 11)
𝐵 = (33, 35, 40, 38)(34, 37, 39, 36)(3, 9, 46, 32)(2, 12, 47, 29)(1, 14, 48, 27)

The exact numbers aren’t actually relevant for understanding, but you can

sanity-check that exponentiating all of them to the fourth gives identity, due

to all of the cycles having length four. This matches our expectation of how

Rubik’s Cube moves should work.

Now, if we restrict our set of permutations to only contain the permutations

that are reachable through combinations of ⟨𝑈, 𝐷, 𝑅, 𝐿, 𝐹 , 𝐵⟩ moves (after

all, we can’t arbitrarily re-sticker the cube), then this structure is mathemat

ically identical — isomorphic — to the Rubik’s Cube group. This is called a

subgroup of the permutation group of 48 elements because the Rubik’s Cube

group is like its own group hidden inside that group of permutations.

It may appear as if our definition of the Rubik’s cube group includes too many

elements: after all, each sticker on a Rubik’s cube has seven identical twins, but

we’re giving them different numbers and treating them as if they were unique.

If there existed an algorithm that could swap two stickers of the same color,

then our definition would count those as different states whereas they would

really be the same state. However, we don’t have to worry about this because

all of the pieces on a cube are unique. The only way to swap two stickers would

be to swap two pieces, and that would definitely produce a different cube state.

Note that we don’t get to make that assumption for puzzles like the 4x4x4

which have identical center pieces, however we are conveniently not writing

about the 4x4x4 because our code doesn’t even work for that yet 🤫.

One final term to define is an orbit. An orbit is a collection of stickers (or

whatever elements are being permuted, in full generality) such that if there

exists a sequence of moves that moves one sticker in the orbit to another

252

sticker’s place, then that other sticker must be in the same orbit as the first.

On a Rubik’s Cube, there are two orbits: the corners and the edges. There

obviously doesn’t exist an algorithm that can move a corner sticker to an edge

sticker’s place or vice versa, therefore the corners and edges form separate

orbits. Intuitively, you can find orbits of any permutation subgroup by coloring

the stickers using the most colors possible such that the colors don’t change

when applying moves.

() R

Excluding centers, the best we can do is two colors, and those two colors

highlight the corner and edge orbits.

3.1.3) Parity and Orientation sum

Now, we need to show some properties of how the Rubik’s Cube group works.

First, we would ideally like a way to take pieces into account in our represen

tation of the Rubik’s Cube group. After all, we showed in the introduction

how important they are to the mechanics of the cube. What we could do is

instead of having a permutation group over all of the stickers, we could have

a permutation group over all of the pieces. There are 12 edges + 8 corners = 20

pieces on a Rubik’s Cube, so we need a subgroup of the permutations on 20

elements. That’s fine and dandy, but actually not sufficient to encode the full

cube state. The reason is that pieces can rotate in place:

253

() R U R U F

You can see that happening here, where the UFR corner is twisted in place in

the first example and the FR edge is flipped in place in the second example.

This shows that just encoding the positions of the pieces under-specifies the

entire cube state, so we need to take orientation into account.

In general, any edge or corner can exist in any other edge or corner position

in any orientation. So how can we encode this orientation in full generality?

It’s easy to tell that the UFR corner and FR edge are twisted and flipped

respectively in the above examples because the pieces can be solved by simply

rotating them in place. However, when the pieces are not in their solved

positions, there is no way to solve them just by rotating them in place. We

need some kind of reference frame to decide how to label a piece’s orientation

regardless of where it is on the cube. How can we define this reference frame?

Since the problem is that pieces can be unsolved, what we can do is imagine

a special recoloring of the cube such that all pieces are indistinguishable but

still show orientation. If the pieces aren’t distinguishable, then they’re always

in their “solved positions” since you can’t tell them apart. Then it’s easy to

define orientation in full generality. Here is a recoloring that does that:

You can imagine that we are taking a Rubik’s cube and replacing all of the

stickers with new stickers of the respective colors. The reason that we can do

254

this is that we already know how to represent the locations of pieces using

a permutation group, so it is valid to throw out the knowledge of a piece’s

location while figuring out how to represent orientation. To determine the

orientation of a piece on a normally colored Rubik’s Cube, you can take the

algorithm to get to that cube state and apply it to our specially recolored cube:

Even though the UFR corner isn’t in its solved position, we can still say that

the piece in the UFR position is twisted because the blue sticker isn’t facing up,

like it is in the recolored solved state. You would be able to “solve” that piece

—make it look like the respective position in the recolored solved state—by

simply rotating it in place. This gives us a reference frame to define orientation

for a piece regardless of where it is located on the cube.

Note that this recoloring is entirely arbitrary and it’s possible to consider any

recoloring of the solved state such that all pieces are indistinguishable but still

exhibit orientation, as long as you are consistent with your choice. However,

this recoloring is standard due to its nice symmetries as well as properties we

will describe in the next paragraph.

Based on this recoloring, you can see that the move set ⟨𝑈, 𝐷, 𝑅2, 𝐹2, 𝐿2, 𝐵2⟩
preserves orientation of all of the pieces, and on top of that, 𝑅 and 𝐿 preserve

orientation of the edges but not of the corners. The moves 𝐹 and 𝐵 flip four

edges, while 𝑅, 𝐹 , 𝐿, and 𝐵 twist four corners.

255

R F

Note that corners actually have two ways of being misoriented. If the corner

is twisted clockwise, we say that its orientation is one, and if it’s counter-

clockwise, we say that its orientation is two. Otherwise, it is zero.

1 2

We know that 𝐹 and 𝐵 flip four edges, but what do 𝑅, 𝐹 , 𝐿, and 𝐵 do to

corners? Well whatever it is, those four do the same thing because all four

of those moves are symmetric to each other with respect to corners in our

recoloring. Therefore, we can track what happens to the corners for just one

of them.

R

+1

+1

+2
+2

This should make logical sense. We already know that if you apply 𝑅 twice,

the corners don’t get twisted, and that can be seen in the figure as well. If you

256

perform 𝑅 twice, each corner will get a +1 twist and a +2 twist, which sums

to three, except that three wraps around to zero.

From here, we can prove that for any cube position, if you sum the orientations

of all of the corners, you get zero. Any quarter turn about 𝑅, 𝐹 , 𝐿, and 𝐵 adds

a total of 1 + 2 + 1 + 2 = 6 twists to the corners, which wraps around to zero.

Therefore, moves cannot change the total orientation sum so it always remains

zero. This shows why a single corner twist is unsolvable on the Rubik’s Cube:

∅

The orientation sum for the corners in this position is one (one for the twisted

corner plus zero for the rest), however it’s impossible to apply just one twist

using moves, and the corner orientation sum will always be one regardless of

the moves that you do.

Similarly, we can show that the orientation sum of edges is also always zero. If

we call the non-flipped state “zero” and the flipped state “one”, then the 𝐹 and

𝐵 turns both flip four edges, adding +4 to the edge orientation sum of the cube,

which wraps around to zero. Therefore, a single edge flip is unsolvable too:

∅

257

Is there anything else that’s unsolvable? Actually, yes! For this to make sense,

we have to think of permutations as a composition of various swaps. For

example, a four-cycle can be composed out of three swaps:

(1, 2) · (1, 3) · (1, 4) = (1, 2, 3) · (1, 4) = (1, 2, 3, 4)

In general, any permutation can be expressed as a composition of swaps. So

what does this have to do with Rubik’s Cubes? Well a funny thing with swaps

is that permutations can only either be expressed as a combination of an even

or an odd number of swaps. This is called the parity of a permutation. You can

see that a four-cycle has odd parity because creating it requires an odd number

of swaps. Any quarter turn of a Rubik’s Cube can be expressed as a four cycle

of corners and a four cycle of edges, which is 3 + 3 = 6 swaps. Overall, the

permutation is even.

Therefore, a two-swap of Rubik’s Cube pieces is unsolvable because creating it

requires a single swap, and doing turns only does even permutations, meaning

the permutation of pieces will always remain odd.

∅

Is there any other arrangement of pieces that is unsolvable? Actually no! You

can show this by counting the number of ways that you can take apart and

randomly put together a Rubik’s Cube, then dividing that by three because

two thirds of those positions will be unsolvable due to the corner orientation

sum being non-zero. Then divide by two for edge orientation sum, and then

divide by two again for parity. You will see that the number you get is 4.3 ·
1019 which is exactly the size of the Rubik’s Cube group.

258

3.1.4) Cycle structures

Now that we understand orientation, we can notate cube states in terms of

permutation and orientation of pieces rather than just permutation of stickers.

This will make the way in which the Qter Architecture Solver works easier to

think about. Lets see how we can represent the 𝑅𝑈 algorithm.

R U

Next, lets trace where the pieces go. Instead of using numbers to represent the

pieces in the cycle notation, we can simply use their names.

(UFR)(FDR, UFL, UBL, UBR, DBR)(FR, UF, UL, UB, UR, BR, DR)

Note that I’m writing down the one-cycle of the UFR corner because we will

see that it twists in place. If you would like, you can manually verify the tracing

of the pieces. Next, we need to examine changes of orientation.

R U

I’m going to notate orientation by writing the amount of orientation that a

piece acquires above it.

+1 +2 +0 +0 +2 +1 +0 +0 +0 +0 +0 +0 +0
(UFR)(FDR, UFL, UBL, UBR, DBR)(FR, UF, UL, UB, UR, BR, DR)

259

The process of translating a cube state into cycles of pieces including orien

tation is known as blind tracing because when blind solvers memorize a puzzle,

they memorize this representation. Using this representation, we can actually

calculate the order of the algorithm. In the intro, we claimed that the 𝑅𝑈

algorithm repeats after performing it 105 times, but now we can prove it.

First, we have to consider how many iterations it takes for each cycle to return

to solved. To find this, we have to consider both the length of the cycle and

the overall orientation accrued by each piece over the length of the cycle. Lets

consider the first cycle first. It has length one, meaning the piece stays in its

solved location, however the piece returns with some orientation added, so it

takes three iterations overall for that piece to return to solved.

(R U)3

Next, let’s consider the cycle of edges. They have a cycle of seven and don’t

accrue orientation at all, so it simply takes 7 iterations for the edges to return

to solved.

(R U)7

Finally, let’s consider the cycle of corners. It has length 5, so all pieces return

to their solved locations after 5 iterations, but you can see that they accrue

some amount of orientation.

260

(R U)5

How can we calculate how much orientation? Since each piece will move

through each location in the cycle, it will move through each addition of

orientation, meaning that all pieces will accrue the same orientation, and that

orientation will be the sum of all orientation changes, looping around after

three. The cycle has three orientation changes, +2, +2, and +1, and summing

them gives +5 which loops around to +2. You can see in the above example

that all corners in the cycle have +2 orientation.

It will take three traversals through the cycle for the orientation of the pieces

to return to zero, so the cycle resolves itself after 15 iterations.

(R U)15

Now, the entire cycle resolves itself once all individual cycles resolve them

selves. To calculate when, we can simply take the LCM:

lcm(3, 7, 15) = 105

This also clarifies what pieces we have to select as parameters for “solved-

goto”. We need a representative piece from every cycle that isn’t redundant.

We don’t need to care about the 3 cycle because it is always solved whenever

the 15 cycle is. We can pick any representatives from the 7 and 15 cycles, for

example FDR and FR. Using those, the QAT program

261

.registers {

 A ← 3x3 (R U)

}

label:

solved-goto A label

…compiles to the Q program

Puzzles

A: 3x3

1 | solved-goto FDR FR 1

3.1.5) Orientation and parity sharing

Lets examine a real Qter architecture, for example the 90/90 one:

A = R’ F’ L U’ L U L F U’ R B = U F R’ D’ R2 F R’ U’ D

Now let’s blind-trace the cube positions:

+2 +1 +1 +0 +0 +0 +1 +0 +0 +0
𝐴 = (DBL)(UF)(UFL, UBL, UBR)(UL, LB, RB, UB, LD)

+1 +1 +1 +1 +2 +1 +0 +0 +0 +1 +0
𝐵 = (DBL)(UFR)(DFR, DFL, DBR)(RD)(UR, FL, DB, FR, FD)

From here, we can calculate the orders of each register. 𝐴 has cycles of length

3, 2, 9, 10 with LCM 90, and 𝐵 has cycles 3, 3, 9, 2, 10 with LCM 90. However,

we can see that both cycles twist the DBL corner! This is not good for the

cycles being independently decodable. However, what we can do is ignore

that one piece when calculating cycle lengths and performing “solved-goto”

262

instructions. Without that shared piece, we get that 𝐴 has cycles 2, 9, 10 still

with LCM 90 and 𝐵 has cycles 3, 9, 2, 10 still with LCM 90.

Why would we need to share pieces? The fundamental reason is due to

the orientation and parity constraints described previously. You’ve seen that

having a non-zero orientation sum allows the lengths of cycles to be extended

beyond what they might otherwise be, however that net orientation needs to

be cancelled out elsewhere to ensure that the orientation sum of the whole

puzzle remains zero. For example, for the register 𝐴, the +2 on DBL cancels

out the +1 on that 15 cycle.

It’s possible for us to use the same piece across different registers to cancel

out orientation, allowing more pieces to be used for storing data. We call this

orientation sharing, and the pieces that are shared are called shared pieces. We

can also use sharing to cancel out parity. For both 𝐴 and 𝐵, all of the cycles

that contribute to the order have even parity, meaning that parity doesn’t need

to be cancelled out. However if they had odd parity, then we could share two

pieces that can be swapped to cancel out parity. We call that parity sharing.

Note that it would actually be possible for all of the DBL, UFR, UF, and RD

pieces to be shared and the cycles would still work; it just happens that they

aren’t. If they were shared, then there could be the possibility of a shorter

algorithm to produce a cycle, but at the cost of the ability to use those pieces

to detect whether the register is divisible by two or three.

3.1.6) What is the Qter Architecture Solver?

You now have all of the background knowledge required to understand what

the Qter Architecture Solver does. It is split into two phases:

The Cycle Combination Finder calculates what registers are possible on a

Rubik’s Cube by determining how cycles can be constructed and how pieces

would have to be shared. One of the outputs of Cycle Combination Finder for

the 90/90 architecture shown above would be something like:

Shared: Two corners, Two edges

A:

 - Cycle of three corners with any non-zero net orientation

263

 - Cycle of five edges with non-zero net orientation

B:

 - Cycle of three corners with any non-zero net orientation

 - Cycle of five edges with non-zero net orientation

Then the Cycle Combination Solver would take that as input and output the

shortest possible algorithms that produce the given cycle structures.

Oh, and all of the theory that we just covered is generalizable to arbitrary

twisty puzzles, and the Qter Architecture Solver is programmed to work for

all of them. However, we will stick to the familiar Rubik’s Cube for our expla

nation.

3.2) Cycle Combination Finder
You saw an early example of utilizing cycles as registers within the cube: the

U algorithm can be defined addition by 1. This example is a good introduction,

but it only allows for a single cycle of four states.

Ideally we would have more states and multiple cycles. The Cycle Combination

Finder (CCF) finds all ‘non-redundant’ cycle combinations, those which cannot

be contained within any larger combinations. A 90/80 (90 cycle and 80 cycle)

is redundant, since 90/90 is also possible. It contains all of the 90/80 positions,

as well as additional positions that are not possible with 90/80, such as (81,81).

To define some terms, we will let the set of cycles that represent a register be

the cycle combination of that register. For example, the cycle combination of

𝑅𝑈 is the set of the 3, 7, and 15 cycles that make it up. An architecture is the

set of cycle combinations of all registers, as well as the set of shared pieces

that make the registers possible to realize on the cube given the orientation

and parity constraints. For the purpose of the CCF, we don’t need to know

exactly which pieces need to make up each cycle or are shared. We only need

the number of pieces for each orbit that are shared, and the number and

orientation sum of pieces in each cycle. Figuring out which pieces are the best

to use is the job of the Cycle Combination Solver.

264

3.2.1) Beginning with primes

To begin constructing architectures for a puzzle, we must begin by finding

which individual cycles are possible to create. We begin by looking at primes.

For large primes and their powers, generally 5 or up, we will be able to create

a cycle that is the length of that prime power only if there is an orbit of pieces

greater than or equal to that prime power. The 3x3 has an orbit of 12 edges, so

the prime powers 5, 7, and 11 will fit, but 13, 25, and 1331 are too large.

For smaller primes, generally just 2 and 3, we may be able to make a more

compact cycle using orientation. Instead of cycling 3 corner pieces, we can just

twist a single corner, since corners have an orientation of period 3. A power

of a small prime 𝑝𝑘 will fit if there exists a number 𝑚 ≤ 𝑘 and an orbit with at

least 𝑝𝑚 pieces, and the power deficit can be made up by orienting, meaning

that 𝑝𝑘−𝑚 divides the orientation period of the orbit. For example, 16 will fit

since there are at least 8 edges, and we can double the length of the 8-cycle

using a 2-period orientation.

Following this logic, the prime powers that fit on a 3x3 are: 1, 2, 3, 4, 5, 7, 8, 9,

11, 16.

3.2.2) Generalizing to composites

We then combine the prime powers to find all integer cycle combinations that

will fit on the puzzle. Each prime power is assigned a minimum piece count,

which is the minimum number of pieces required to construct that cycle. For

large primes, such as 5, this is just the value itself. For the smaller primes it is

𝑝𝑚 as shown above, replaced by 0 if 𝑝𝑚 = 1. This replacement is done since a

cycle made purely of orientation could be combined with one made of purely

permutation. If there is a 5-cycle using 5 edges, we can insert a 2-cycle for

‘free’ by adding a 2-period orientation.

Given these minimum piece counts, we recursively multiply all available

powers for each prime (including 𝑝0), and exit the current branch if the piece

total exceeds the number of pieces of the puzzle.

For example, an 880 cycle will not fit on the 3x3. The prime power factorization

is 16, 5, and 11 which have minimum piece counts of 8, 5, and 11 respectively,

265

adding to 24. The 3x3 only has 20 pieces so this is impossible. However, a 90

cycle may fit. The prime powers of 90 are 2, 9, and 5, which have minimum

piece counts 0, 3, and 5. These add to 8, much lower than the 20 total pieces. It

is important to note that this test doesn’t guarantee that the cycle combination

will fit, just that it cannot yet be ruled out.

3.2.3) Combining multiple cycles

Once all possible cycle orders are found, we search for all non-redundant

architectures. We will generate the cycle combinations in descending order,

since any architecture is equivalent to a descending one. For example, 10/20/40

is the same as 40/20/10.

First, we have to generate the list of potentially possible sets of orders of

registers in an architecture, which we do by simply trying every possible set

of cycle combinations that we discovered in the previous step, and pruning

all values with minimum piece sums greater than the number of pieces on

the puzzle, and that don’t have registers in descending order. This does not

guarantee that the architecture in the list can be created, but it is true that

every architure that can be created is in the list.

To test if a set of orders fits on the puzzle, we decompose each order into its

prime powers, and try placing each power into each orbit. For the 3x3 there

are 2 orbits: corner pieces and edge pieces. For example, to test if 90/90 fits, we

decompose it into prime power cycles of 2, 9, 5, 2, 9 and 5. Note that for the

purpose of fitting all of the cycles onto the puzzle, we don’t need to remember

which cycle belongs to which register. We recursively place each cycle into

each orbit, failing if there is not enough room in any orbit for the current

power. This begins by trying to place the first 2-cycle in the corner orbit, and

passing to the 9-cycle, then once that recursion has finished, trying to place

the 2-cycle in the edge orbit and passing forward.

If all cycles get placed into an orbit, then we have found a layout that fits,

and any pieces left-over can be considered shared. However, we still need to

perform a final check to ensure that parity and orientation are accounted for

by the shared pieces. If this check passes, we log the architecture. Otherwise

it fails and we continue the search.

266

After a successful architecture has been found, it can be used to exit early for

redundant combinations: If all possible architectures from the current branch

of the search would be redundant to a successful combination, we exit and

continue at the next step of the previous level. Once all possible outputs have

been found, we can remove all redundant cycle combinations that we weren’t

able to remove during search and return from the Cycle Combination Finder.

3.3) Cycle Combination Solver
The Cycle Combination Finder of the Qter Architecture Solver finds the non-

redundant cycle structures of each register in a Qter architecture. We are not

done yet—for every cycle structure, we need to find an algorithm that, when

applied to the solved state, yields a state with that cycle structure. That is, we

need to solve for the register’s “add 1” operation. Once we have that, all other

“add N”s can be derived by repeating the “add 1” operation 𝑁 times and then

shortening the algorithm using an external Rubik’s Cube solver.

The Cycle Combination Solver adds two additional requirements to this task.

First, it solves for the shortest, or the optimal algorithm that generates this

cycle structure. This is technically not necessary, but considering that “add 1”

is observationally the most executed instruction, it greatly reduces the overall

number of moves needed to execute a Q program. Second, of all solutions of

optimal length, it chooses the algorithm easiest to physically perform by hand,

which we will discuss in a later section that follows.

In order to understand how to optimally solve for a cycle structure, we briefly

turn our attention to an adjacent problem: optimally solving the Rubik’s Cube.

We thank Scherpius [5] for his overview of the ideas in these next few sections.

3.3.1) Optimal solving background

First, what do we mean by “optimal” or “shortest”? We need to choose a metric

for counting the number of moves in an algorithm, and there are a variety of

ways to do so. In this paper, we will use what is known as the half turn metric,

which means that we consider U2 to be a single move. An alternative choice

would be the quarter turn metric which would consider U2 to be two moves,

however that is less common in the literature and we won’t use it in this paper.

267

In an optimal Rubik’s Cube solver, we are given a random position, and we

must find the shortest algorithm that brings the Rubik’s Cube to the solved

state. Analogously, the Cycle Combination Solver starts from the solved state

and finds the shortest algorithm that brings the puzzle to a position with

our specified cycle structure. The only thing that’s fundamentally changed is

something trivial — the goal condition. We bring up optimal solving because

this allows us to reuse its techniques which have been studied for the past 30

years [6].

It would be reasonable to expect there to be a known structural property of the

Rubik’s Cube that makes optimal solving easy. Indeed, to find a good solution

to the Rubik’s Cube, the technique of Kociemba’s algorithm [7] cleverly utilizes

a specific subgroup to solve up to 3900 individual position per second near

optimally [8]. However, we want to do better than that.

Unfortunately, to find an optimal solution, the only known approach is to brute

force all combinations of move sequences until the Rubik’s Cube is solved. To

add some insult to injury, Demaine [9] proved that optimal 𝑁 × 𝑁 × 𝑁 cube

solving is NP-complete. However, this doesn’t mean we can’t optimize the

brute force approach. We will discuss a variety of improvements that can be

made, some specific to the Cycle Combination Solver only, but unless there is

a significant advancement in group theory relating to the problem it is solving,

the runtime is necessarily going to be exponential.

3.3.2) Tree searching

A more formal way to think about the Cycle Combination Solver is to think

of the state space as a tree of Rubik’s Cube positions joined by the 18 moves.

The number of moves that have been applied to any given position is simply

that position’s corresponding level in the tree. We will refer to these positions

as nodes.

268

... ...

Our goal is now to find a node with the specified cycle structure at the topmost

level of the tree, a solution of the optimal move length. Those familiar with data

structures and algorithms will think of the most obvious approach to this form

of tree searching: breadth-first search (BFS). BFS is an algorithm that explores

all nodes in a level before moving on to the next one. Indeed, BFS guarantees

optimality, and works in theory, but not in practice: extra memory is needed

to keep track of child nodes that are yet to be explored. At every level, the

number of nodes scales by a factor 18, and so does the extra memory needed.

At a depth level i.e. sequence length of just 8, BFS would require storing 189

depth-9 nodes or roughly 200 billion Rubik’s Cube states in memory. This is

clearly not practical; we need to do better.

We now consider a sibling algorithm to BFS: depth-first search (DFS). DFS is

an algorithm that explores all nodes as deep as possible before backtracking.

It strikes our interest because the memory overhead is minimal; all you need

269

to keep track of is the path taken to reach a node, something that can be easily

managed during the search. However, because we explore nodes depth-first, it

offers no guarantee about optimality, so we still have a problem.

A simple modification to DFS can make it always find the optimal solution.

We tweak the DFS implementation so that it explores up until a specified

depth, testing whether each node at this depth is a solution, without exploring

further. We repeatedly run this implementation at increasing depth limits until

a solution is found. Put simply, you do a DFS of depth 1, then of depth 2, and

so on. This idea is known as iterative-deepening depth-first search (IDDFS), a

hybrid of a breadth-first and depth-first search. IDDFS does repeat some work

each iteration, but the cost is always small relative to the last depth because

the Rubik’s Cube search tree grows exponentially. The insignificance of the

repeat work is further exacerbated given that even more time is spent at the

last depth running the test for a solution. Because the majority of the time is

spent at the last depth 𝑑, the asymptotic time complexity of 𝑂(18𝑑) in Big O

notation is actually identical to BFS while solving the memory problem. We

will gradually improve this time complexity bound throughout the rest of this

section.

3.3.3) Pruning

IDDFS solves the memory issue, but is lacking in speed because tree searching

is still slow. The overwhelming majority of paths explored lead to no solution.

What would be nice is if we could somehow know whether all paths that

continue from a given node are dead ends without having to check by brute-

force.

For this, we introduce the idea of a pruning table. For any given Rubik’s Cube

position, a pruning table tells you a lower bound on the number of moves

needed to reach a Cycle Combination Solver solution. Suppose we are running

IDDFS until depth 12, we’ve done 5 moves so far, and we have reached this

node.

270

R’ U2 L’ D’ R’

If we query the pruning table and it says that this position needs at least 8

moves to reach a Cycle Combination Solver solution, we know that this branch

is a dead end. 5 moves done so far plus 8 left is 13, which is more than the

12 at which we plan to terminate. Hence, we can avoid having to search this

position any longer.

The use of pruning tables in this fashion was originated by Korf [6] in his

optimal Rubik’s Cube solver. He observed the important requirement that

pruning tables must provide admissible heuristics to guarantee optimality. That

is, they must never overestimate the distance to a solution. If in the above

example, the lower bound was wrong and there really was a solution in 12

moves, then the heuristic would prevent us from finding it. Combining IDDFS

and an admissible heuristic is known as Iterative Deepening A* (IDA*).

How are we supposed to store all 43 quintillion positions of the Rubik’s

Cube in memory? Well, we don’t: different types of pruning tables solve this

problem by sacrificing either information or accuracy to take up less space.

Hence, pruning tables give an admissible heuristic instead of the exact number

of moves needed to reach a Cycle Combination Solver solution.

Loosely speaking, pruning tables can be thought of as a form of meet-in-the-

middle search, more generally known as a space—time trade-off [10]. Even

when running the Cycle Combination Solver on the same puzzle, we must

generate a new pruning table for every unique cycle structure. It turns out this

is still worth it. In general, we can characterize the effectiveness of a pruning

table by its expected admissible heuristic, 𝑝. Pruning tables reduce the search

depth of the tree because they have the effect of preventing searching the last

𝑝 depths, and the improvements are dramatic because the number of nodes at

271

increasing depths grows exponentially. But there is no free lunch: we have to

pay for this speedup by memory.

We are left with a need to examine the asymptotic time complexity of

IDA*. In general pruning table distributions are nontrivial to analyze, so our

observations below are not a formal analysis but rather a series of intuitive

arguments. An IDA* search to depth limit 𝑑 is similar to an IDDFS search to

depth limit 𝑑 − 𝑝, implying a time complexity of IDA* is 𝑂(18𝑑−𝑝) (recall how

the last depth is the dominating factor). One might even be eagar to consider

these two searches exactly equivalent, but Korf describes a perhaps surprising

discrepancy: the number of nodes visited by IDA* is empirically far greater, up

to a magnitude of two. Nodes with large pruning values are quickly pruned,

while nodes with small pruning values survive to spawn more nodes. Thus,

IDA* search is biased in favor of smaller heuristic values, and the expected

admissible heuristic is actually lesser.

Next we conjecture that 𝑝 is logarithmically correlated to the number of states

the pruning table can store, which we denote as the amount of memory used

𝑚. If we first assume the branching factor 𝑏 to be constant, implying each

depth has exactly 𝑏 times more states stored in the pruning table than the

previous depth, we notice the maximum depth that is stored in the pruning

table is at least log𝑏 𝑚. Since there are exponentially more states at the last

depth, 𝑝 is negligibly less than log𝑏 𝑚; hence, 𝑝 ≃ log𝑏 𝑚. In reality, there are

two flaws with this assumption. First, the branching factor is not constant

and always less than its theoretical value, eventually converging to zero. This

implies our estimate of 𝑝 ≃ log𝑏 𝑚 is an egregious overestimate of the actual

average pruning value, but we consider this okay because IDA* is biased in

favor of smaller heuristic values. Second, when there are relatively many Cycle

Combination Solver solutions, the maximum depth state stored in the pruning

table decreases. We also consider this okay because many solutions implies

that one will be found at a lesser search depth. If we let 𝜆 equal to both of these

reductions, we find that the IDA* search depth limit remains approximately

the same: (𝑑 − 𝜆) − (𝑝 − 𝜆) = 𝑑 − 𝑝. All of the aforementioned biases cancel

each other out to some extent, so we proceed with this approximation of 𝑝.

272

As such, 𝑂(18𝑑−𝑝) = 𝑂(18𝑑− log18 𝑚) = 𝑂(18𝑑

𝑚). Empirically and analyti

cally, doubling the size of the pruning table halves the CPU time required to

perform a search.

3.3.4) Pruning table design

The larger the admissible heuristic, the better the pruning, and the lesser the

search depth. So, we need to carefully design our pruning tables to maximize:

• how much information we can store within a given memory constraint; and

• the value of the admissible heuristic

3.3.4.a) Symmetry reduction

Symmetry reduction is the most famous way to compress pruning table

entries. We thank Kociemba [11] for his excellent explanations of symmetry

reduction on his website. Take a good look at these two cube positions below:

A = F U F’ U’ B = R U R’ U’

They are different but they are basically identical. If you replace red with

blue, blue with orange, orange with green, green with red, you will have

transformed 𝐴 into 𝐵. Because these two cube positions have the exact same

structure of pieces, they need the same number of moves to reach a Cycle

Combination Solver solution.

We call such positions symmetrically equivalent. If we really wanted to be

serious about pruning table compression, what we can do is store a single

representative of all symmetrically equivalent cubes because they would all

share the same admissible heuristic value, and keeping a separate entry for

each of these positions is a waste of memory.

Defining symmetrically equivalent cubes by figuring out an arbitrary way

to recolor the cube is a very handwavy way to think about it, nor is it

273

very efficient. The more mathematically precise way to define symmetrically

equivalent cubes is with permutations. Two cube positions 𝐴 and 𝐵 are

symmetrically equivalent if there exists a symmetry 𝑆 of the cube such that

𝑆𝐴𝑆−1 = 𝐵, where the 𝑆 operations are spatial manipulations the whole

cube. We can prove that 𝐴 and 𝐵 are symmetrically equivalent using this

model:

Solved

(reference frame)

𝑆
Rotate 90°

𝐴
Apply 𝐴

𝑆−1

Rotate −90°

=

𝐵
Resultant 𝐵

In group theory, 𝑆𝐴𝑆−1 is called a conjugation of 𝐴 by 𝑆—we first perform

the symmetry, apply our desired permutation, and then perform the inverse

of the symmetry to restore the original reference frame. The symmetries of

arbitrary polyhedra themselves form a group, called a symmetry group, so we

can guarantee an 𝑆−1 element exists.

Symmetry reduction compresses the pruning table by the number distinct

symmetries—all possible values of 𝑆—of the cube, so how many are there?

The symmetry group of the cube 𝑀 consists of 24 rotational symmetries and

24 mirror symmetries, for a total of 48 distinct symmetries. You can think

of the mirror symmetries by imagining holding a Rubik’s Cube position in a

mirror to get a mirror image of that position. In this reflectional domain, we

274

again apply the 24 rotational symmetries. We illustrate one (of very many)

ways to uniquely construct all of these symmetries, with the mirror symmetry

highlighted in red.

𝑆𝐹𝐵2 𝑆𝑈𝑅𝐵3
3x

2x

𝑆𝑈4

4x

2x
𝑆𝑅2

The 48 symmetries of the cube

𝑀 = {(𝑆𝑈𝑅𝐵3)
𝑎 ⋅ (𝑆𝑅2)

𝑏 ⋅ (𝑆𝑈4)
𝑐 ⋅ (𝑆𝐹𝐵2)

𝑑 | 𝑎 ∈ {0, 1, 2}, 𝑏 ∈ {0, 1},

𝑐 ∈ {0, 1, 2, 3}, 𝑑 ∈ {0, 1}}

We discussed how symmetry conjugation temporarily changes a position’s

frame of reference before subsequently restoring it. Without any further con

text this would be fine, but in programming we efficiently represent a Rubik’s

Cube position by treating the centers as a fixed reference frame to avoid storing

their states. This optimization is critical for speed because it makes position

composition faster and minimizes data overhead. The ensuing caveat is that

275

we must always refer to a fixed frame of reference, so we have to rethink

how symmetry conjugation works. The solution is simple, and the established

theory still holds: we define the change of reference frame as a position such

that, when composed with the solved state, it transforms the pieces around

the fixed frame of reference.

Fixed frame of reference

𝑆𝐹𝐵2
Invalid position

𝑆𝑈4
Invalid position

𝑆𝑈𝑅𝐵3
Valid position

𝑆𝑅2
Valid position

The takeaway is in the observation that every symmetry position has the

centers in the same spatial orientation.

Notice that the 𝑆𝐹𝐵2 and 𝑆𝑈4 symmetries are invalid positions with this fixed

reference frame—the latter because of the parity constraint, and the former

because the mirror image produces a reflectional coloring. This does not matter

because the inconsistencies are un-done when 𝑆−1 is applied; thus the conju

gation 𝑆𝐴𝑆−1 always results in a valid position.

276

48 symmetries is already quite a lot, but we can still do better. If we can show

that both an arbitrary Rubik’s Cube position and its inverse position require

the same number of moves to reach a Cycle Combination Solver solution, we

can once again store a single representative of the two positions and further

compress the table by another factor of 2. We call this antisymmetry.

Let us prove that our presumption is true.

1. Let 𝑃 and 𝑆 be defined as sequences such that 𝑃 𝑆 is an optimal solution

to the Cycle Combination Solver.

2. We take the inverse of 𝑃 𝑆 to get 𝑆−1𝑃−1 of the same sequence length,

which is still an optimal solution to the Cycle Combination Solver. Taking

the inverse of the “add 1” operation (which is 𝑃 𝑆) is the “sub 1” operation;

changing your frame of reference to think of “sub 1” as “add 1” yields

another way to construct the exact same register.

3. We conjugate 𝑆−1𝑃−1 with 𝑆 to get 𝑆(𝑆−1𝑃−1)𝑆−1 = 𝑃−1𝑆−1 of the

same sequence length. It turns out that conjugate elements in a permuta

tion group exhibit the same cycle structure, hence this is also an optimal

solution to the Cycle Combination Solver. To understand why, we simplify

the problem and examine the general case of two conjugate elements in a

permutation group 𝐴 and 𝐴𝐵𝐴−1. If permutation 𝐵 takes element 𝑥 to 𝑦,

then 𝐴𝐵𝐴−1 takes element 𝐴(𝑥) to 𝐴(𝑦). Indeed,

(𝐴𝐵𝐴−1)(𝐴(𝑥)) = 𝐴(𝐵(𝐴−1(𝐴(𝑥)))) = 𝐴(𝐵(𝑥)) = 𝐴(𝑦)

So every cycle (𝑥1, 𝑥2, …, 𝑥𝑛) of 𝐵 is taken to the cycle

(𝐴(𝑥1), 𝐴(𝑥2), …, 𝐴(𝑥𝑛)) of 𝐴𝐵𝐴−1. Viewing permutations as bijective

maps of its elements, conjugation only relabels the elements moved by 𝐵. It

does not change the cycle lengths nor how many cycles there are. We apply

this corollary with 𝐴 = 𝑆 and 𝐵 = 𝑆−1𝑃−1.

4. We have shown that if 𝑃 𝑆 is an optimal solution to the Cycle Combination

Solver then so is 𝑃−1𝑆−1. 𝑆 and 𝑆−1 are the same sequence length; thus,

the positions reached by any arbitrary 𝑃 and by 𝑃−1 starting from the

277

solved state require the same number of moves to reach an optimal Cycle

Combination Solver solution. This completes our proof.

Symmetry and antisymmetry reduction comes with a cost. During IDA*

search, every position must be transformed to its “symmetry and antisym

metry” representative before using it to query the pruning table. To do so

we conjugate the position by the 48 symmetries and the inverse by the 48

antisymmetries to explore all the possible representatives. To identify the

representative position after each conjugation, we look at its raw binary

state representation and choose the lexicographic minimum (i.e. the minimum

comparing byte-by-byte). Multiple symmetries may produce the representa

tive position, however that is okay because at no point do we actually care

about which symmetry conjugation did so; the result is still the same.

The symmetry and antisymmetry reduction algorithm as described so far

would be slow—we need to perform 96 symmetry conjugations, and each is

about as expensive as two moves. We use the following trick described by

Rokicki [12]: instead of computing the full conjugation for every symmetry

conjugation, we compute the elements one-at-a-time. We take the least possi

ble value for the first element of all the symmetry conjugations and filter for

the ones that give us that value. Then, we compute all the second symmetry

conjugation elements, find the least possible value for that, and so on. This

optimization usually only ends up performing a single full symmetry conju

gation.

3.3.4.b) Pruning table types

The Cycle Combination Solver uses a separate pruning table per the puzzle

orbits. For the Rubik’s Cube, that means one pruning table for the corners and

one for the edges. To get an admissible heuristic for an individual position, we

query each pruning table based on the states of the position’s corresponding

orbits and take the maximum value. A brief example: if querying a Rubik’s

Cube state returns 3 on the corners pruning table and 5 on the edges pruning

table, then its admissible heuristic is the maximum of the two, 5. We estab

lished that larger heuristic values are better, and the optimality guarantee still

stands because each individual pruning table is already admissible.

278

Generating a pruning table for an orbit is done in two phases. First, we

enumerate every single position of the orbit and mark solutions of the Cycle

Combination Solver. Then, we search the Rubik’s Cube tree but from these

solution states instead of from the solved state, and storing the amount of

moves required to reach each state found as the admissible heuristic.

The Cycle Combination Solver supports four different types of pruning tables:

the exact pruning table, the approximate pruning table, the cycle structure

pruning table, and the fixed pruning table. They are dynamically chosen at

runtime based on a maximum memory limit option.

We defer our discussion of pruning table types for a later revision.

Finally, the Cycle Combination Solver generates the pruning tables and per

forms IDA* search at the same time. It would not be very efficient for the

Cycle Combination Solver to spend all of its time generating the pruning

tables only for the actual searching part to be easy, so it balances out querying

and generation; starting from an uninitialized pruning table, if the number of

queries exceeds the number of set values by a factor of 3, it pauses the search

to generate a deeper layer of that pruning table and then continues.

3.3.4.c) Pruning table compression

The Cycle Combination Solver supports three different data compression

types: no compression, nxopt compression, and tabled asymmetric numeral

systems (tANS) compression. They are dynamically chosen at runtime based

on a maximum memory limit option.

We defer our discussion of pruning table compression for a later

revision.

3.3.5) IDA* optimizations

We employ a number of tricks to improve the running time of the Cycle

Combination Solver’s IDA* tree search.

3.3.5.a) SIMD

We enhance the speed of puzzle operations through the use of puzzle-specific

SIMD on AVX2 and Neon instruction set architectures. Namely, the VPSHUFB

279

instruction on AVX2 and the tbl.8/tbl.16 instructions on Neon perform

permutation composition in one clock cycle, enabling for specialized SIMD

algorithms to compose two Rubik’s Cube states [13] and test for a Cycle Com

bination Solver solution [14]. They have both been disassembled and highly

optimized at the instruction level. Additionally, the puzzle-specific SIMD

uses compacted representations optimized for the permutation composition

instructions. For example, it uses a representation of a Rubik’s Cube state that

can fit in a single YMM CPU register on AVX2 and in the D and Q CPU registers

on Neon.

Pruning table generation also uses puzzle-specific SIMD. To generate a

pruning table on the corners orbit, we need to use a different Rubik’s Cube

representation because we don’t want to waste CPU caring about what

happens to edges. So, every orbit has its own specialized SIMD representation

and SIMD algorithm modifications.

We leave the precise details at the prescribed references; we defer our

discussion of how the SIMD algorithms work for a later revision.

3.3.5.b) Canonical sequences

At every increasing depth level of the IDA* search tree we explore 18 times as

many nodes. We formally call this number the branching factor—the average

number of child nodes visited by a parent node. A few clever observations can

reduce the branching factor.

We observe that we never want to rotate the same face twice. For example,

if we perform 𝑅 followed by 𝑅′, we’ve just reversed the move done at the

previous level of the tree. Similarly if we perform 𝑅 followed by another 𝑅, we

could have simply done 𝑅2 straight away. In general, any move should not be

followed by another move in the same move class, the set of all move powers.

This reduces the branching factor of the child nodes from 18 for all 18 moves

to 15. Additionally, we don’t want to search both 𝑅𝐿 and 𝐿𝑅 because they

commute, and result in the same net action. So, we assume that 𝑅 (or 𝑅2, 𝑅′)

never follows 𝐿 (or 𝐿2, 𝐿′), and in general, we only permit searching distinct

commutative move classes strictly in a single order only. Move sequences

that satisfy these two conditions are called canonical sequences. Canonical

280

sequences are special because these two conditions make it easy to check if a

move sequence in the search tree is redundant.

What does the second condition reduce our branching factor from 15 to? We

start by counting the number of canonical sequences at length 𝑁 , denoted 𝑎𝑛,

using a recurrence relation. We consider the last move of the sequence 𝑀1,

the second to last move 𝑀2, and the third to last move 𝑀3. The recurrence

relation can be constructed by analyzing two cases:

• Case 1: 𝑀1 and 𝑀2 do not commute.

In this case, 𝑎𝑛 is simply 𝑎𝑛−1 multiplied by the number of possibilities

of 𝑀1. Since 𝑀1 and 𝑀2 do not commute, 𝑀1 cannot be 𝑀2 (−1) nor

its opposite face (−1). Therefore, 𝑀1 must be one of 6 − 1 − 1 = 4 move

classes, or one of the 4 ∗ 3 = 12 possible moves. We can establish that the

first component in the recurrence relation for 𝑎𝑛 is 12𝑎𝑛−1.

• Case 2: 𝑀1 and 𝑀2 commute.

We need to be careful to only count 𝑀1 and 𝑀2, one time so we count

them in pairs. In this case, 𝑎𝑛 is simply 𝑎𝑛−2 multiplied by the number of

strictly ordered (𝑀1, 𝑀2) pairs. There are 3 pairs of commutative move

classes: 𝐹𝐵, 𝑈𝐷, and 𝑅𝐿. We have to discard one of these pairs because 𝑀3

necessarily commutes with the move classes in one of these pairs since the

union of all of these pairs is every move. Such a canonical sequence where

the subsequence 𝑀3𝑀2𝑀1 all commute cannot exist because one of those

moves will always violate the strict move class ordering. For example, if 𝑀1

is 𝐿 and 𝑀2 is 𝑅, then there is no possible option for 𝑀3 that makes the full

sequence a canonical sequence.

Each move class in each pair can perform three moves, which implies that

each pair contributes 3 ∗ 3 = 9 possible moves. Overall we find this number

to be (3 − 1) ∗ 9 = 18 possible moves. We can establish that the second

component in the recurrence relation for 𝑎𝑛 is 18𝑎𝑛−2.

𝑎𝑛 can be thought of as the superposition of these two cases with the base cases

𝑎1 = 18 and 𝑎2 = 243 (exercise to the reader: figure out where these come

281

from). Hence, 𝑎𝑛 = 12𝑎𝑛−1 + 18𝑎𝑛−2 for 𝑛 > 2. The standard recurrence re

lation can be solved as follows:

𝑟𝑛 = 12𝑟𝑛−1 + 18𝑟𝑛−2

𝑟𝑛−2(−𝑟2 + 12𝑟 + 18) = 0

𝑟 =
−12 ± √122 − 4(−1)(18)

2(−1)

𝑟1,2 = 6 ± 3
√

6

𝑎𝑛 = 𝐴𝑟𝑛−2
1 + 𝐵𝑟𝑛−2

2 = 𝐴
𝑟2
1
𝑟𝑛
1 + 𝐵

𝑟2
2
𝑟𝑛
2

{

𝑎1 = 18

𝑎2 = 𝐴 + 𝐵 = 243
𝑎3 = 𝐴𝑟1 + 𝐵𝑟2 = 12𝑎2 + 18𝑎1 = 3240

Solve for 𝐴 and 𝐵
...
𝑎𝑛 ≃ 1.362(13.348)𝑛 + 0.138(−1.348)𝑛

The 1.362(13.348)𝑛 term dominates 0.138(−1.348)𝑛 as 𝑛 approaches infinity;

our new branching factor is approximately 13.348!

It turns out that 𝑎𝑛 is not an exact bound on the number of distinct positions

at sequence length 𝑁 but merely an upper bound. This is because the formula

overcounts, and the actual number is always lower: it considers canonical

sequences that produce equivalent states such as 𝑅2 𝐿2 𝑈2 𝐷2 and 𝑈2 𝐷2 𝑅2

𝐿2 as two distinct positions. It turns out it is extremely nontrivial to describe

and account for these equivalences, to the point where it’s not worth doing

so: at shallow and medium depths, 𝑎𝑛 roughly stays within 10% of the actual

distinct position count. The Cycle Combination Solver considers the extra

work negligible and searches equivalent canonical sequences anyways. The

Big O time complexity of IDA* can be realized as 𝑂(13.348𝑑

𝑚), an improvement

over 𝑂(18𝑑

𝑚) from Section 3.3.2.

The Cycle Combination Solver uses an optimized finite state machine to

perform the canonical sequence optimization.

282

3.3.5.c) Sequence symmetry

We use a special form of symmetry reduction during the search we call

sequence symmetry, first observed by Rokicki [15] and improved by our imple

mentation. Some solution to the Cycle Combination Solver 𝐴𝐵𝐶𝐷 conjugated

by 𝐴−1 yields 𝐴−1(𝐴𝐵𝐶𝐷)𝐴 = 𝐵𝐶𝐷𝐴, which we observe to be a rotation

of the original sequence as well as a solution to the Cycle Combination Solver

by the properties of conjugation discussed earlier. Repeatedly applying this

conjugation:

𝐴−1(𝐴𝐵𝐶𝐷)𝐴 = 𝐵𝐶𝐷𝐴

⇒ 𝐵−1(𝐵𝐶𝐷𝐴)𝐵 = 𝐶𝐷𝐴𝐵

⇒ 𝐶−1(𝐶𝐷𝐴𝐵)𝐶 = 𝐷𝐴𝐵𝐶

⇒ 𝐷−1(𝐷𝐴𝐵𝐶)𝐷 = 𝐴𝐵𝐶𝐷

forms an equivalence class based on all the rotations of sequences that are

all solutions to the Cycle Combination Solver. The key is to search a single

representative sequence in this equivalence class to avoid duplicate work.

Similarly to symmetry conjugation, we choose the representative as the lexi

cographically minimal sequence on a move-by-move basis (with a move class

ordering relation defined). Unlike symmetry conjugation, we don’t manually

apply all sequence rotations to find the representative; rather, we embed

sequence symmetry as a modification to the recursive IDA* algorithm such

that it only ever searches the representative sequence. We do this by observing

that if a representative sequence starts with move 𝐴, then every other move

cannot be lexicographically lesser than it. If this observation were to be false,

we could keep on rotating the sequence until the offending move is at the

beginning of the sequence, and since that move is lexicographically lesser

than 𝐴 that sequence rotation would be the true representative. This contra

dicts the initial representative sequence assumption. We permit moves that are

lexicographically equal to 𝐴 (i.e. in the same move class) but change the next

recursive step to repeat the logic on the move after 𝐴. The overall effect is that

the IDA* algorithm only visits move sequences such that no later subsequence

283

is lexicographically lesser than the beginning of the move sequence. This

suffices for the complete sequence symmetry optimization.

The modification described is not yet foolproof. The sequence 𝐴𝐵𝐴𝐵𝐶𝐴𝐵

would technically be valid as there is no later subsequence lesser than the

beginning, but the actual lexicographically minimal representative is the

𝐴𝐵𝐴𝐵𝐴𝐵𝐶 sequence rotation. The “later subsequence” of the true represen

tative wraps around from the end to the beginning. So, extra care must be

taken at the last depth to manually account for the wrapping behavior. We only

apply this to the last depth, so sequences like 𝐴𝐵𝐴𝐵𝐶𝐴𝐵𝐶 are still searched

by the next depth limit of IDA*.

We can extend our prior definition of canonical sequences to include sequence

symmetry as a third condition. How does sequence symmetry affect the num

ber of canonical sequences at depth 𝑁? Because a sequence of length 𝑁 has 𝑁

sequence rotations, sequence symmetry logically divides the total number of

nodes visited by 𝑁 , but only in the best case. The canonical sequence 𝑅 𝑈 𝑅 𝑈

𝑅 𝑈 only has 2 members in its sequence rotational equivalence class, not 6, so

the average value to divide by is actually a bit less than 𝑁 . It follows that the

average number of canonical sequences at depth 𝑁 (and the IDA* asymptotic

time complexity) is bound by Ω(13.348𝑑

𝑚𝑑) and 𝑂(13.348𝑑

𝑚). Testing has shown

this number to typically be right in the middle of these two bounds.

Furthermore, we take advantage of the fact that the optimal solution sequence

almost never starts and ends with commutative moves. We claim that the IDA*

algorithm almost never needs to test 𝐴𝐵 … 𝐶 such that 𝐴 and 𝐶 commute for

a solution. The proof is as follows.

We first observe that if 𝐴𝐵 … 𝐶 is a solution, then 𝐶𝐴𝐵 … is also a solution

by a sequence rotation. This tells us that 𝐴 and 𝐶 cannot be in the same move

class or else they could be combined to produce the shorter solution 𝐷𝐵 … .

Such a shorter solution would have been found at the previous depth limit,

implying that 𝐴𝐵 … 𝐶 never would have been explored, making this situation

an impossibility. This also tells us that 𝐴 also cannot be in a greater move class

than 𝐶 because 𝐶𝐴𝐵 … would be a lexicographically lesser than 𝐴𝐵 … 𝐶 ,

contradicting our earlier proof that IDA* only searches the lexicographically

284

minimal sequence rotation (the representative). Therefore, 𝐴 must be in a

lesser move class than 𝐶 .

If 𝐶𝐴𝐵 … is a solution, then 𝐴𝐶𝐵 … is also a solution because 𝐴 and 𝐶

commute. By the transitive property, if 𝐴𝐵 … 𝐶 is a solution, then so is

𝐴𝐶𝐵 … . Both of these sequences are independently searched and tested as a

solution because there is no direct “commutative move ordering” or sequence

symmetry relation between them. This is redundant work; we choose to

discard the 𝐴𝐵 … 𝐶 case. This completes our proof.

This optimization only applies to the last depth in IDA*, so it only prevents

running the test to check if a node is a solution and does not affect the time

complexity. It turns out to be surprisingly effective at reducing the average

time per node because most of the time is spent at the last depth.

We alluded to an edge case when we said “almost never.” If 𝐵 doesn’t exist,

or if every move from 𝐵 … commutes with 𝐴 and 𝐶 , then this optimization

will skip canonical sequences where every move commutes with each other;

for example 𝐹 𝐵 on the Rubik’s Cube. The number of skipped sequences is so

small that we have the bandwidth to manually search and test these sequences

for solutions before running IDA*.

3.3.5.d) Pathmax

We use a simple optimization described by Mérõ [16] called pathmax to prune

nodes with large child pruning heuristics. When a child node has a large

pruning heuristic, we can set the current node cost to that value minus one and

re-prune to avoid expanding the remaining child nodes. This larger heuristic

is still admissible because it is one less than a known lower bound, and the

current node is one move away from all of its child nodes. This is only effective

when the heuristics are inconsistent, or, in this case, when the pruning table

entries are the minimum of two or more other values. With exact pruning

tables only, this optimization will never run because the entries are perfect

heuristics that cannot exhibit this type of discrepency.

285

Pathmax

−1

2 + 5 ≯ 8

51

4 + 5 > 8 (Prune)

51

IDA* pathmax at depth = 5, depth limit = 8

3.3.5.e) Parallel IDA*

Our last trick is to enhance IDA* through the use of parallel multithreaded IDA*

(PMIDA* [17]). PMIDA* runs in two phases. In the first phase, we use BFS to

explore the state space to a shallow depth, maintaining a queue of all of states

at the last search depth. In the second phase, we use a thread pool to run IDA*

in parallel for every state in that queue, utilizing of all of the CPU cores on the

host machine. To uphold the optimality guarantee, PMIDA* synchronizes the

threads using a barrier that triggers when they have all completed exploring

the current level. It can be thought of as a simple extension to the familiar IDA*

algorithm.

There have been many parallel IDA* algorithms discussed in literature; how

do we know PMIDA* is the best one? We take advantage of the special fact

that the Cycle Combination Solver starts searching from the solved state. In

order to understand this, we compare the total Rubik’s Cube position counts

with the Rubik’s Cube position counts that are unique by symmetry.

286

Rubik’s Cube position counts [18]

Depth Count

Branching

factor

0 1 NA

1 18 18

2 243 13.5

3 3240 13.333

4 43239 13.345

5 574908 13.296

6 7618438 13.252

7 100803036 13.231

8 1332343288 13.217

9 17596479795 13.207

Rubik’s Cube position counts unique

by symmetry + antisymmetry [18]

Depth Count

Branching

factor

0 1 NA

1 2 2

2 8 4

3 48 6

4 509 10.604

5 6198 12.177

6 80178 12.936

7 1053077 13.134

8 13890036 13.190

9 183339529 13.199

Recall that our theoretical branching factor is 13.348. In the table of Rubik’s

Cube position counts, the branching factor roughly matches this number.

However, at the shallow depths of the table of Rubik’s Cube position counts

unique by symmetry + antisymmetry, our branching factor is much less

because there are duplicate positions when performing moves from the solved

state. Intuitively, this should make sense: the Rubik’s Cube is not scrambled

enough to start producing unique positions. It is easy to pick out two sequences

of length two that are not unique by symmetry; for example 𝑅2 𝑈 and 𝑅2 𝐹 .

The branching factor converges to its theoretical value as the Rubik’s Cube

becomes more scrambled because symmetric positions become more rare. In

fact, it was shown by Qu [19] that scrambling the Rubik’s Cube can literally

be modelled as a Markov chain (it’s almost indistinguishable from a random

walk of a graph). Hence, it is unlikely for two random move sequences of the

same length to produce positions equivalent by symmetry. We know that such

collisions do happen because the branching factor doesn’t actually reach the

13.348 value, but we consider them negligible.

287

The effectiveness of the PMIDA* algorithm stems from combining all of these

observations. When our initial shallow BFS search is done, we filter out the

many symmetrically equivalent positions from the queue to avoid redundant

work before we start parallelizing IDA*. The savings are incredibly dramatic:

at depth 4, for example, we symmetry reduce the number of nodes from 43239

to 509. This is a reduction by ∼ 84.9, a factor that is close to the familiar

96 (the number of symmetries + antisymmetries). Once we do that, and the

cube starts to become sufficiently scrambled, we are confident to claim that

each IDA* thread worker explores their own independent regions of the search

space and duplicates a negligible amount of work.

We make note that there are almost always going to be more positions in the

queue to parallelize than available OS threads. We use an optimized thread

pool work stealing algorithm for our multithreaded implementation.

We squeeze out our last bit of juice by overlapping pruning table memory

latency with the computation. It has been empirically observed that random

access into the pruning table memory is the dominating factor for Rubik’s

Cube solvers. Modern processors include prefetching instructions that tell the

memory system to speculatively load a particular memory location into cache

without stalling the execution pipeline to do so. Our PMIDA* implementation

uses a technique described by Rokicki [20] called microthreading to spend

CPU time on different subsearches while waiting for the memory to come

to a query. It splits up each thread into eight “slivers” of control. Each sliver

calculates a pruning table query memory address, does a prefetch, and moves

on to the next sliver. When that sliver gets control again, only then does it

reference the actual memory. By handling many subsearches simultaneously,

microthreading minimizes the CPU idle time.

How does PMIDA* affect the asymptotic time complexity? We established in

Section 3.3.5.c an upper bound of 𝑂(13.348𝑑

𝑚). The time required by PMIDA*

can be computed by adding the time of the first and second phases. In the

first phase the time required for the BFS is 𝑂(13.348𝑑1) where 𝑑1 is the

aforementioned shallow depth. In the second phase we symmetry reduce at the

shallow depth, split the work across 𝑡 independent threads, and ignore nodes

288

before depth 𝑑1. The time required is 𝑂((13.348𝑑

𝑚𝑠 − 13.348𝑑1)/𝑡) where 𝑠 is

the number of symmetries + antisymmetries. The PMIDA* time complexity

is thus 𝑂(13.348𝑑1 + (13.348𝑑

𝑚𝑠 − 13.348𝑑1)/𝑡), but we consider 𝑑1 to be very

small and 𝑠 to be a negligible constant. As such the final time complexity

becomes 𝑂(13.348𝑑

𝑚𝑡). We can apply the exact same logic to our lower bound,

and we get Ω(13.348𝑑

𝑑𝑚𝑡).

3.3.6) Larger twisty puzzles

The overwhelming majority of our research has been within the realm of the

Rubik’s Cube, and so far, we have yet to run the Cycle Combination Solver

on non-Rubik’s Cube twisty puzzles. While we are confident all of our theory

generalizes to larger twisty puzzles (with minor implementation detail differ

ences [12]), there is a practical concern we expect to run into.

Optimally solving the 4x4x4 Rubik’s Cube has been theorized to take roughly

as much time as computing the minimum number of moves to solve any 3x3x3

Rubik’s Cube [21], which took around 35 CPU-years [8]. It may very well

be the case that the Cycle Combination Solver, even with all its optimization

tricks, will never be able to find a solution to a Cycle Combination Finder cycle

structure for larger twisty puzzles. Thus, we are forced to sacrifice optimality

in one of three ways:

• We can write multiphase solvers for these larger puzzles. Multiphase solvers

are specialized to the specific puzzle, and they work by incrementally bring

ing the twisty puzzle to a “closer to solved” state in a reasonable number of

moves. However, designing a multiphase solver is profoundly more involved

compared to designing an optimal solver. This approach is unsustainable

because it is impractical and difficult to write a multiphase solver for every

possible twisty puzzle.

• We can resort to methods to solve arbitrary permutation groups. We specu

late that the most promising method of which may be to utilize something

called a strong generating set [22]. The GAP computer algebra system

implements this method in the PreImagesRepresentative function as illus

trated in . The algorithms produced by the strong generating sets can quickly

289

become large. In the future, we plan to investigate the work of Egner [23]

and apply his techniques to keep the algorithm lengths in check.

• When all other options have been exhausted, we must resort to designing

our cycle structure algorithms by hand. This approach would likely follow

the blindfolded twisty puzzle solving method of permuting a three or five

pieces at a time. Contrary to popular belief, the blindfolded solving method

is simple, and it is generalizable to arbitrary twisty puzzles.

3.3.7) Movecount Coefficient Calculator

The Cycle Combination Solver’s solutions are only optimal by length, but not

by easiness to perform. Meaning, if you pick up a Rubik’s cube right now, you

would find it much harder to perform 𝐵2 𝐿′ 𝐷2 compared to 𝑅 𝑈 𝑅′ despite

being the same length because this algorithm requires you to awkwardly re-

grip your fingers to make the turns. This might seem like an unimportant

metric, but remember: we want Qter to be human-friendly, and the “add 1”

instruction is observationally the most executed one.

Thus, the Cycle Combination Solver first finds all optimal solutions of the same

length, and then utilizes our rewrite of Trang’s Movecount Coefficient Calcu

lator [24] to output the solution easiest to physically perform. The Movecount

Coefficient Calculator simulates a human hand turning the Rubik’s Cube to

score algorithms by this metric. For non-Rubik’s cube Cycle Combination

Solver puzzles, we favor algorithms that turn faces on the right, top, and front

of the puzzle, near where your fingers would typically be located.

3.3.8) Re-running with fixed pieces

The Cycle Combination Solver as described so far only finds the optimal

solution for single register for a Qter architecture given by the Cycle Combi

nation Finder. Now we need to re-run the Cycle Combination Solver for the

remaining registers to find their optimal solutions.

Re-running the Cycle Combination Solver brings about one additional require

ment: the pieces affected by previously found register algorithms must be fixed

in place. We do this to ensure incrementing register 𝐴 doesn’t affect the state

of register 𝐵; logically this kind of side-effect is nonsensical and important

290

to prevent. The moves performed while incrementing register 𝐴 can actually

move these fixed pieces around whereever they want—what only matters is

that these pieces are returned to their original positions. In other words, all of

the register incrementation algorithms in a Qter architecture must commute.

Fixing pieces also means we can no longer use symmetry reduction because

two symmetrically equivalent puzzles may fix different sets of pieces.

How can we be so sure that the second register found is the optimal solution

possible? Yes, while the Cycle Combination Solver finds the optimal solution

given the fixed pieces constraint, what if a slightly longer first register algo

rithm results in a significantly shorter second register algorithm? In this sense

it is extremely difficult to find the provably optimal Qter architecture because

of all of these possiblities. The Cycle Combination Solver does not concern

itself with this problem, and it instead uses a greedy algorithm. It sorts the

Cycle Combination Finder registers by their sizes (i.e. the number of states) in

descending order. We observe that the average length of the optimal solution

increases as more pieces on the puzzle are fixed because there are more

restrictions. Solving each cycle structure in this order ensures that registers

with larger sizes are prioritized with shorter algorithms because they are more

likely to be incremented in a 𝑄 program than smaller sized registers.

4) Conclusion
In this article, we gave a comprehensive description of Qter from the perspec

tive of a user, as well as from the perspective of the underlying mathematics

and algorithms. If you read the whole thing, you now have the necessary

background knowledge to even contribute to Qter. You’ve probably figured

out that Qter is useful as nothing more than a piece of art or as an educational

tool, but it’s fulfilled that role better than we could have ever imagined.

Our journey with Qter is not even close to over, but given our track record

at recruiting people to help us, yours probably is. We hope that we were

able to give you the “WOW!” factor that we felt (and are still feeling) while

putting this thing together. We’re just a bunch of randos, and we built Qter out

of knowledge scoured from Wikipedia, scraps of advice from strangers, and

291

flashes of creativity and inspiration. We hope that we have inspired you to find

your own Qter to obsess over for years.

5) Appendix A: GAP programming
We provide an example run of GAP solving the random scramble 𝐹 𝐿′ 𝐷′ 𝐵2

𝑈 ′ 𝐵′ 𝑈 𝐵2 𝑅2 𝐹 ′ 𝑅2 𝑈2 𝐹 ′ 𝑅2 𝐹 𝑈2 𝐵′ 𝑅2 𝐹 ′ 𝑅 𝐵2 in just over two

seconds using the strong generating set method.

gap> U := (1, 3, 8, 6)(2, 5, 7, 4)(9,33,25,17)(10,34,26,18)

(11,35,27,19);;

gap> L := (9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)

(6,22,46,35);;

gap> F := (17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)

(8,30,41,11);;

gap> R := (25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)

(8,33,48,24);;

gap> B := (33,35,40,38)(34,37,39,36)(3, 9,46,32)(2,12,47,29)

(1,14,48,27);;

gap> D := (41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)

(16,24,32,40);;

gap> random_scramble :=

F*L^-1*D^-1*B^2*U^-1*B^-1*U*B^2*R^2*F^-1*R^2*U^2*F^-1*R^2*F

*U^2*B^-1*R^2*F^-1*R*B^2;;

gap> cube := Group(U, L, F, R, B, D);;

gap> generator_names := ["U", "L", "F", "R", "B", "D"];;

gap> hom :=

EpimorphismFromFreeGroup(cube:names:=generator_names);;

gap> ext_rep := ExtRepOfObj(PreImagesRepresentative(hom,

random_scramble));;

gap> time;

2180

gap> for i in Reversed([1..Length(ext_rep) / 2]) do

> Print(generator_names[ext_rep[i * 2 - 1]]);

> count := ext_rep[i * 2];

> if count in [-2, 2] then

> Print("2");

> elif count in [-3, 1] then

> Print("'");

292

> else

> Print(" ");

> fi;

> Print(" ");

> od;

U B2 R2 F B' R' B R F R F' R' U' D R D' F' U L F2 U L'

U2 F D F' D' L U L2 U' B L B' U' L' U' L' B' U' B U' L U

L' U L U F U' F' L U F U' F' L' U F' U' L' U L F L U2

L' U' L U' L' U2 F U R U' R' F' U' F R U R' F' L' B' U2 B

U L

6) References
[1] Lucas Garron, “Rubik's Cube Solution — Reference Sheet.” [Online].

Available: https://cube.garron.us/solution.pdf

[2] D. Wang, “Rubik's Cube Move Notation.” [Online]. Available: https://

jperm.net/3x3/moves

[3] M. Hedberg, On Rubik's Cube. KTH Royal Institute of Technology, 2010,

pp. 65–79.

[4] “Analyzing Rubik's Cube with GAP.” [Online]. Available: https://www.

math.rwth-aachen.de/homes/GAP/WWW2/Doc/Examples/rubik.html

[5] J. Scherphuis, “Computer Puzzling.” [Online]. Available: https://www.

jaapsch.net/puzzles/compcube.htm

[6] R. Korf, “Finding optimal solutions to Rubik's cube using pattern data

bases,” 1997, AAAI Press.

[7] H. Kociemba, “Two-Phase Algorithm Details.” [Online]. Available:

https://kociemba.org/math/imptwophase.htm

[8] T. Rokicki, H. Kociemba, M. Davidson, and J. Dethridge, “The diameter

of the rubik's cube group is twenty,” 2014, siam REVIEW.

[9] E. Demaine, S. Eisenstat, and M. Rudoy, “Solving the Rubik's Cube

Optimally is NP-complete,” 2018, Schloss Dagstuhl – Leibniz-Zentrum für

Informatik. doi: 10.4230/LIPICS.STACS.2018.24.

293

https://cube.garron.us/solution.pdf
https://jperm.net/3x3/moves
https://jperm.net/3x3/moves
https://www.math.rwth-aachen.de/homes/GAP/WWW2/Doc/Examples/rubik.html
https://www.math.rwth-aachen.de/homes/GAP/WWW2/Doc/Examples/rubik.html
https://www.jaapsch.net/puzzles/compcube.htm
https://www.jaapsch.net/puzzles/compcube.htm
https://kociemba.org/math/imptwophase.htm
https://doi.org/10.4230/LIPICS.STACS.2018.24

[10] “Space–time tradeoff.” [Online]. Available: https://en.wikipedia.org/

wiki/Space%E2%80%93time_tradeoff

[11] H. Kociemba, “Equivalent Cubes and Symmetry.” [Online]. Available:

https://kociemba.org/cube.htm

[12] T. Rokicki, “architecture.md.” [Online]. Available: https://github.

com/cubing/twsearch/blob/0dced6e55f5612609a54c75056d00535fadee0c

8/docs/architecture.md

[13] A. Chaudhary, [Online]. Available: https://github.com/

ArhanChaudhary/qter/blob/8d2cbcb5338250cd25c132678b838d0316f502

f9/src/phase2/src/puzzle/cube3/avx2.rs#L207

[14] A. Chaudhary, [Online]. Available: https://github.com/

ArhanChaudhary/qter/blob/8d2cbcb5338250cd25c132678b838d0316f502

f9/src/phase2/src/puzzle/cube3/avx2.rs#L304

[15] T. Rokicki, Support reduction by rotation of sequences in ordertree. [On

line]. Available: https://github.com/cubing/twsearch/commit/7b1d62bd

9d9d232fb4729c7227d5255deed9673c

[16] L. Mérõ, “A Heuristic Search Algorithm with Modifiable Estimate,” 1984.

[17] B. Mahafzah, “Parallel multithreaded IDA* heuristic search: algorithm

design and performance evaluation,” 2011, Taylor & Francis.

[18] T. Scheunemann, “God's Algorithm out to 15f*.” [Online]. Available:

http://forum.cubeman.org/?q=node/view/201

[19] Y. Qu, T. Rokicki, and H. Yang, “Rubik's Cube Scrambling Requires at

Least 26 Random Moves,” 2024. [Online]. Available: https://arxiv.org/

abs/2410.20630

[20] T. Rokicki, [Online]. Available: https://github.com/cubing/twsearch/

blob/0dced6e55f5612609a54c75056d00535fadee0c8/src/cpp/solve.cpp#L

111

[21] T. Rokicki, “God's number is....” [Online]. Available: https://www.

speedsolving.com/threads/gods-number-is.30231/post-997686

294

https://en.wikipedia.org/wiki/Space%E2%80%93time_tradeoff
https://en.wikipedia.org/wiki/Space%E2%80%93time_tradeoff
https://kociemba.org/cube.htm
https://github.com/cubing/twsearch/blob/0dced6e55f5612609a54c75056d00535fadee0c8/docs/architecture.md
https://github.com/cubing/twsearch/blob/0dced6e55f5612609a54c75056d00535fadee0c8/docs/architecture.md
https://github.com/cubing/twsearch/blob/0dced6e55f5612609a54c75056d00535fadee0c8/docs/architecture.md
https://github.com/ArhanChaudhary/qter/blob/8d2cbcb5338250cd25c132678b838d0316f502f9/src/phase2/src/puzzle/cube3/avx2.rs#L207
https://github.com/ArhanChaudhary/qter/blob/8d2cbcb5338250cd25c132678b838d0316f502f9/src/phase2/src/puzzle/cube3/avx2.rs#L207
https://github.com/ArhanChaudhary/qter/blob/8d2cbcb5338250cd25c132678b838d0316f502f9/src/phase2/src/puzzle/cube3/avx2.rs#L207
https://github.com/ArhanChaudhary/qter/blob/8d2cbcb5338250cd25c132678b838d0316f502f9/src/phase2/src/puzzle/cube3/avx2.rs#L304
https://github.com/ArhanChaudhary/qter/blob/8d2cbcb5338250cd25c132678b838d0316f502f9/src/phase2/src/puzzle/cube3/avx2.rs#L304
https://github.com/ArhanChaudhary/qter/blob/8d2cbcb5338250cd25c132678b838d0316f502f9/src/phase2/src/puzzle/cube3/avx2.rs#L304
https://github.com/cubing/twsearch/commit/7b1d62bd9d9d232fb4729c7227d5255deed9673c
https://github.com/cubing/twsearch/commit/7b1d62bd9d9d232fb4729c7227d5255deed9673c
http://forum.cubeman.org/?q=node/view/201
https://arxiv.org/abs/2410.20630
https://arxiv.org/abs/2410.20630
https://github.com/cubing/twsearch/blob/0dced6e55f5612609a54c75056d00535fadee0c8/src/cpp/solve.cpp#L111
https://github.com/cubing/twsearch/blob/0dced6e55f5612609a54c75056d00535fadee0c8/src/cpp/solve.cpp#L111
https://github.com/cubing/twsearch/blob/0dced6e55f5612609a54c75056d00535fadee0c8/src/cpp/solve.cpp#L111
https://www.speedsolving.com/threads/gods-number-is.30231/post-997686
https://www.speedsolving.com/threads/gods-number-is.30231/post-997686

[22] “Strong generating set.” [Online]. Available: https://en.wikipedia.org/

wiki/Strong_generating_set

[23] S. Egner and M. Püschel, “Solving puzzles related to permutation groups,”

Association for Computing Machinery. [Online]. Available: https://doi.

org/10.1145/281508.281611

[24] V. Trang, “Movecount Coefficient Calculator: Online Tool To

Evaluate The Speed Of 3x3 Algorithms.” [Online]. Avail

able: https://www.speedsolving.com/threads/movecount-coefficient-

calculator-online-tool-to-evaluate-the-speed-of-3x3-algorithms.79025/

295

https://en.wikipedia.org/wiki/Strong_generating_set
https://en.wikipedia.org/wiki/Strong_generating_set
https://doi.org/10.1145/281508.281611
https://doi.org/10.1145/281508.281611
https://www.speedsolving.com/threads/movecount-coefficient-calculator-online-tool-to-evaluate-the-speed-of-3x3-algorithms.79025/
https://www.speedsolving.com/threads/movecount-coefficient-calculator-online-tool-to-evaluate-the-speed-of-3x3-algorithms.79025/

