Text can go here if
necessary. Right now
this is placeholder
text. It shows the

proof of concept of a

15202 % ISUOHIIS

back, but we don’t
need this much.

Would you say you’re more likely to buy a print copy of this book if it had
the Purdue bell tower on it?*

Julian Herzog (Website), CC BY 4.0 <https://creativecommons.org/licenses/by/4.0>, via
Wikimedia Commons

https://creativecommons.org/licenses/by/4.0

Purdue Hackers?
presents

a journal of things done over summer 2025 (and

sometimes the fall, but we don’t talk about that timeline overrun)

SIGHORSE 2025 &4

many authors

cover art by Cynthia, Amber, and Kart
illustrations by Amber and authors

purdue university
west lafayette, indiana

first presented on December 6, 2025
at SPILL?

thank you, sigbovik, for existing so I could copy the title page and
copyright page style off you.

*https://www.purduehackers.com/
*https://spill.purduehackers.com/

https://www.purduehackers.com/
https://spill.purduehackers.com/

Copyright is maintained by the individual authors. You
should ask them about using their articles; they’d likely
enjoy it.

Permission to make digital or hard copies of portions of
this work for personal use is granted; sending copies to
friends, loved ones, annoying acquintances, enemies,
and so on is encouraged.

permission to make digital or hard copies of portions of
this work for classroom use is also granted.

Table of Contents

Foreword ... oov it e 5
Teaching a Neural Network to Play 2048 (+cat)covvun.t. 14
Acromathicso 28
How to NOT build a game controller in 10 easy steps 55
Self-Improvement, Habits, and iPods 79
Sarlacc: A Rust crate for lock-free interning of data 94
EstrogenIs All YouNeedcoiiiiiiiiiiii i, 117
Spread The Love e 132
The Great Events Site Migrationcoviiiiiiii i, 150
A virtual summer art gallery in the form ofa3Dcube 159
The Generativity PatterninRust o i, 168
Qter: the Human Friendly Rubik's Cube Computer 208

Foreword

Hi! I’m Kart. I came up with SIGHORSE, made the website, and (sometimes)
reviewed submissions from authors. I was, of course, helped immeasurably
by many people without whom SIGHORSE would not be possible, but ideally
you’ve already seen their names before this article.

I’d like to talk about SIGHORSE for a bit.

There are three parts to this foreword:

1. Why the word “horse”? Why is it relevant? What does it mean to Purdue
Hackers?

2. Why work on this journal? What forces made us want to create SIGHORSE?

3. Can we see the process of making the cover? Surely it wasn’t too
much work.

1. Bringing forth a longing for horsing
into the world

Purdue Hackers: a community of students who collaborate, learn, and
build kick-ass technical projects.

— Purdue Hackers website, but I removed the emojis

Since forever, horses have been intertwined with the Purdue Hackers
brand.

Discord archaeology points to a particular person starting the conver-
sation off in September 20822 with messages like:

e our mascot should be an 8-bit horse
Also the horse should be yellow
e Here’s every horse: https://every.horse/
» Here’s a horse that’s shaking: https://shakingmy.horse/

The discussion significantly escalated on the next day, when the same
person posted:

Today I forked my personal link shortener to use it for Purdue
Hackers. Introducing puhack. horse’

This person then served as the President of Purdue Hackers for three
years, and led its rise from a 20 person meetup to a 80-180 person
organization with sprawling projects, ideas, and coolness.

Is it any surprise that a club that emphasizes engaging in whimsy and
creating things that bring joy would latch on to “horse”?

2. Putting the Special Interest Group in
the Horse

We’ve established the importance of horses. Now, let’s explore how the
Special Interest Group part came about.

'Discord is an online group messaging platform used by Purdue Hackers. It is a
centerpiece of the community, and many important discussions happen there.
*It redirects to https://www.purduehackers.com/

https://every.horse/
https://shakingmy.horse/
https://www.purduehackers.com/

2.1. BURSTing from creativity

In Fall 20824, Purdue Hackers hosted a showcase for a bunch of projects
that members had created. They called it BURST®. It was glorious.
Seriously. Here’re some photos from BURST to show you just how glorious
it was. I strongly encourage you to check out the website for more
photos and information on the exhibits.

BURST included (among other things) (in clockwise order):

e a phone bell whose insides had been replaced with a Raspberry Pi;
e the Purdue Hackers logo as a meter tall sign;

e a receipt printer; and

e an indie video game about running a boba shop.

*https://burst.purduehackers.com/

https://burst.purduehackers.com/

It was so glorious, in fact, that it challenged my imagination to think
of it even could get more glorious. How could we ever top the projects
that we’d showcased this year? How could we inspire more members of
Hackers to make contributions to the next showcase we hosted?

How could I engage more members and spread the joy of creating and
presenting?

2.2. Conmit Overflow

For the past two years, Purdue Hackers has hosted the “Commit Overflow”
event during Purdue University’s winter break.

Winter break is here; it’s the perfect time to make the things you
didn’t have time to make this semester.

During the last 10 days of the year, we’re running Commit Overflow.
The challenge: every day, commit to GitHub & post an update of what
you’re working on in #checkpoints4

If you make it all 10 days, we’ll send you stickers and a custom
laser-cut badge that will never be made or distributed again.
— The first Commit Overflow announcement in 2022

This event saw great participation from the community: people shipped
commits and maintained a sense of connection over the break. I personally
wrote a lot of documentation for keymasheds, a project I’d showcased
at BURST.

2.3. SIGBOVIK

Now to talk about something completely different: SIGBOVIK® (Special
Interest Group in Harry Quark Bovik) is an yearly joke journal organized

*#checkpoints is a “channel” in Discord; a channel is a discrete subdivision within a
server which members send messages to. #checkpoints, in particular, is a channel where
people can showcase their in-progress creations.

*https://github.com/kartva/keymashed

Shttps://sigbovik.org/

https://github.com/kartva/keymashed
https://sigbovik.org/

primarily by grad students from Carnegie Melon University with clearly
too much time on their hands.

Their name plays on the Association for Computing Machinery’s many
conferences that start with SIG’: SIGPLAN (Special Interest Group on
Programming Languages), SIGGRAPH (Special Interest Group on Graphics),
SIGMICRO (Special Interest Group on Microarchitecture), etc.

The latest edition is just over 408 pages long. Papers published in this
illustrious journal have had titles such as “An Empirically Verified
Lower Bound for The Number Of Empty Pages Allowed In a SIGBOVIK Paper”
or “A Genius Solution: Applications of the Sprague-Grundy Theorem to
Korean Reality TV”.

Did you read
SIGHORSE?
Yes No
“Thanks!” “If you didn’t
enjoy SIGHORSE,
maybe SIGBOVIK would
be more your speed.”

Did you enjoy
SIGHORSE?

Yes
“More of
the same!”

You should read
SIGBOVIK.

No
“If you didn’t read SIGHORSE,
SIGBOVIK may be interesting.”

"https://www.acm.org/special-interest-groups/alphabetical-listing

https://www.acm.org/special-interest-groups/alphabetical-listing

3. Messily pushing the horsing out to
the world

3.1. Defining SIGHORSE

Finally, we can unify the two topics we discussed in the previous

sections: SIGHORSE was proposed as “what if we ran something like Commit

Overflow but in the summer and with a focus on whimsy and silliness?”

Our tenets would be:

e encourage people to build cool things over the summer!

e talk about said things!

e get those things to a presentable state so we could put them in the
journal!

To give an idea of the things SIGHORSE would cover, I produced the
following diagram:

Serious
presentation

9 A

every other

scientific joumal

S7,
& } cﬁg Serious

"’ work

Unserious

Unserious

WOY‘k

presentation

10

Simply put, SIGHORSE was to be inclusive.

(Before you ask, someone did measure the size of the horses and found
it to be around 8.7x larger than the “every other scientific journal”
cloud.)

3.2. Enough ahout SIGHORSE, what about the cover?

I’'m so glad you asked about the cover! I first learned Blenders, then
Krita’, then Inkscape'®, and then finally handed it off to an artist to
finish because I sure couldn’t.

<y
-__,’“g

0

&

F\

Purdue

Hackers P
Conference Proceedings Wack Hacker 4 - Wack 5 - Hacker 6

Wack Hacker 1- Wack 2 - Hagker 3

counterclockwise: first Blender draft, alternate Blender draft, Krita
draft.
You can find the final version by looking at the cover.

3D modeling software: https://www.blender.org/
’Vector/Raster painting software: https://krita.org/en/
yector drawing software: https://inkscape.org/

11

https://www.blender.org/
https://krita.org/en/
https://inkscape.org/

4. As the show curtains descend on the
horse

SIGHORSE has been a blast. I hope you’ll enjoy reading the submissions
as much as the authors enjoyed creating them.

12

13

Teaching a Neural Network to
Play 2048 (+ cat)

14

Angela Qian
Certified PHcker .h
qian220@purdue.edu

Abstract

I decided to teach a neural network to play 2048, despite
knowing very little about how to actually do that. This work
represents a comprehensive summer-long case study employing
the experimental methodology colloquially known as “fuck
around and find out,” formalized here as an iterative process of
unstructured empirical exploration punctuated by intermittent
bursts of ideas that appeared to me in my dreams. Despite
training on a barely adequate dataset and a general disregard for
best practices in machine learning, the project yielded a partially
functional model that occasionally achieves non-embarrassing
results. Future work will focus on replacing my uneducated,
half-baked ideas with something vaguely resembling standard
practice, as well as examining the effects of reading at least one
relevant paper before implementation.

mailto:qian220@purdue.edu

1 TL;DR: I made an Al that plays 2048

I've been mildly (okay, extremely) /)
obsessed with 2048 since I was around

ten years old. Funny tiles with big o N\
numbers itches my brain really good. =
Anyways, 'm studying computer science mw

in college right now, and lately I've
gotten interested in machine learning. So
I figured, why not combine the two?

2 Oops! I don’t know what

, Figure 1: Author’s artistic
I'm d01ng interpretation of this project’

I got all hyped up about making a 2048 as a horse. Unclear if

bot, but was quickly brought back to the author has ever seen a horse.
crushing reality that: 'm a stupid little

undergrad with a smooth little brain and do not know much about machine
learning.

I started looking into some machine learning techniques, and the one that
stood out to me most was imitation learning — basically, monkey see, monkey
do. The reason? I honestly just wanted to avoid the headache of coming
up with a way to “quantify” or “rank” how good a move is. With imitation
learning, the model is given a bunch of state-action pairs (boards and their
corresponding moves), and learns to predict the next action from a given state.

3 What would I do? Let’s make the bot guess

Thanks to doing some undergrad research assistant stuff, I know that usually
training these types of models requires massive amounts of data. As in,
hundreds or even thousands of games. So of course, my first instinct is to
search online for some pre-existing datasets I can use.

This project can be found and played at https://angelazqian.github.io/2048-Al
Hopefully by the time you read this paper, my models will be slightly more competent
than they were when I wrote this.

15

https://angelazqian.github.io/2048-AI

I did manage to find some datasets of
Game over! 2048 games online, but after digging

You earned 1,809,300 points with into the stats, it turns out those players

59,426 moves in 557:31.
don’t perform nearly as well as I do. For

reference, Figure 2 shows my highscore
16384 || 32768 £
rom last summer.

Not only did their games tend to end
much earlier than mine, looking through
m their gameplay, a lot of their moves were

less than strategic. And as the saying
2 4 2 goes — if you want something done
right, do it yourself.

Figure 2: My highscore I ended up writing a small Python script

from last summer that worked as a keylogger. When run, it
opens 2048 in my browser, and for every
move I make, the script saves the board state along with the move into a JSON
file. This also allowed me to undo a move if I slipped up, so I didn’t end up
logging “bad moves” into the dataset. After collecting a staggering eight games
(ok, not a lot lol but in my defense each game lasts anywhere from half an hour
to four hours and i didn’t have much free time since i was employed full-time

over the summer), it’s time to start training!

4 Forcing my model to see The Horrors

When looking into how to do imitation learning, the first method I came
across was using Multilayer Perceptrons (MLPs).? Essentially, it’s a type of
neural network that processes multiple inputs, and returns a single output.
This seemed like a good solution, as I could use the 16 grids of the game board
as the input, then have it return the direction to move the tile in. I train it on
the 8 games I have, load the model into the game and... yeah it sucks. Half the
moves it was making were things I would never do. Back to the drawing board.

*MLP is also the acronym for “My Little Pony,” which is rather fitting considering this is
an entry in SSIGHORSE. I thought this was hilarious so I have given my model a
ponysona. See Figure 1.

16

Maybe the problem lies with my data? High

When I play 2048, I tend to shove my big e
tiles in the top-right corner, favoring the I__'_-’__’

upper edge, as shown in Figure 3. This

would be reflected in the dataset, since all

the collected games would follow the same

pattern.

Since the model would have only learned

Low
Tiles
to play well in th ientati , .
p y e same orle'n ation as me Figure 3: My preferred
when it loses that structure, it struggles to : .
orlentation

recover. That’s also a problem if someone

wanted to try playing the game themself, then swap in the bot mid-way — their
tile alignment may be different than mine. Even natural gameplay sometimes
shifts the board’s orientation over time. I duplicated my data to represent all 8
orientations (4 x 90° rotations, then 2 X for each mirror), as shown in Figure 4,
and there is a slight improvement, but it’s still comically bad.

roto rot90 rotls0 rot270 High
Tiles
—
mir rot180 mir rot270
—_— — —> —-p-T
Low
Tiles

Figure 4: All 8 possible orientations of the board

After some thought, it occurred to me that treating each block in the grid as
an independent parameter doesn’t communicate any positional information,
which is extremely important in 2048. To address this, instead of treating
the grid as 16 independent parameters, I started treating the grid as an
image, essentially implementing a rudimentary form of computer vision. I

17

accomplished this by switching from using MLPs to using a Convolutional
Neural Network (CNN), which takes in a matrix input and uses convolutional
layers to produce a single output. Much better results! But still not nearly as
good as I had hoped.

5 Finetuning, but I am Woefully Uneducated

At this point I wanted to try finetuning my model, which means taking an
existing trained model and continuing to train it so it becomes better adapted
for the task. I looked into some common finetuning techniques, and the one
that made the most sense to me was reinforcement learning through self-play,
since 2048 is a single player game where you can objectively tell how good a
game was through the final score.

In reinforcement learning, each full playthrough of the game is called an
episode, and after each episode the model updates based on a reward function,
which is basically a formula that tells the model what counts as “good”. To
encourage the model to be constantly improving instead of settling for an
okay-ish score, I defined the reward function as the difference between the
latest episode’s score and the average score of past episodes.

And... it gets worse. What.’

I’ll put this on the back burner for now and return to this later.

6 Making my model stop being Evil

The main issue about my model at this point is that it dies a lot early game,
but if it somehow survives past a certain point, it starts performing well,
which I think is because of rotation noise. This is because early on in the

*In the writing of this journal entry, I found out that my mistake was baking a moving
baseline into the reward function, which makes reward non-stationary. What I was
previously using as the reward function was actually something called the advantage
(essentially how much better an action was than what the model usually expects).
However, that should be handled inside the learning algorithm, not included in the reward
itself. What I should have used here was a Deep Q-Network (DQN), which is designed to
estimate long-term value for actions in each game state and updates the model more
reliably.

18

game, the model seems to execute moves from various rotations, as if it can’t
decide which one to follow, leading me to remove the early gameplay from
all rotations. I also noticed that when the board gains a large tile in a corner,
it becomes ambiguous to the model as to which orientation it should follow.
Considering that one of the main rule-of-thumb’s when playing 2048 is that
you should pick a direction, label it as “evil” and avoid it at all costs, this
becomes a bit of a problem. For example, in Figure 5, if the largest tile is placed
in the top-right corner, it could follow the orientation that favors the upper
edge, designates down to be the “evil move”, and mostly play moves up, right,
and left. However, it could also follow the orientation that favors the right
edge, designates left as the “evil move”, and mostly play moves right, down,
and up. Following this logic, all 4 directions may seem like reasonable moves
to the model, which is very bad.

rot0 mir rot270

f
f
!

—

Good moves: up, right, left Good moves: right, up, down

Figure 5: Ambiguity leads to all four directions
being possible “good moves”

When playing 2048, it is good to choose one orientation and stick with
it. However, sometimes a mistake happens, and you are forced to switch
orientations in order to recover. The most common type of orientation change
that happens mid-game is when you keep the same “evil move” and continue
to favor the same edge, but switch to the other corner on the edge to keep
the largest tiles. As an example, in Figure 6, the “evil move” continues to be
down and the favored edge continues to be up, but the corner used to store the
largest tile switches from the top right corner to being the top left.

19

mistake made changed to mir rot0 High

T

Tiles

Figure 6: A common way of saving a game after a blunder is to switch
orientations

To get rid of the orientation ambiguity for the model while still allowing it
the flexibility to recover from blunders, I removed half of the rotations (the
ones involving 90° and 270° rotations) from the training dataset. Just for good
measure, I also removed all instances of when I was forced to do the “evil move”
from all of the rotations. When I trained my model again on this new filtered
data, I got much better results.

7 Cat

You’re probably wondering where the cat comes in. There was “cat” in the title,
you flipped to see what it was about, and instead got the deranged ramblings
of some loser with an unhealthy obsession with 2048.

On July 18th around 10pm, my neighbor knocked on my door to tell me she
heard what sounded like kitten meowing noises coming from my car. When
I went to check, I could hear this little creature wailing from inside the car
engine. I popped open the hood of my car, hoping to scoop him out, but the
noise startled him, and he bolted into the surrounding bushes.

I regularly feed the neighborhood stray cats, and I know that all the strays in
the area have been spayed or neutered, so the kitten had likely been separated
from his mother. I couldn’t bring myself to just leave him to the elements, so
I sat on my porch with a bowl of Churu and unsalted chicken broth to try to
lure him back out. He kept crying from the bushes and would occasionally dart

20

under other cars on the street, but he still wouldn’t come near me. By 6am, I
was cold, exhausted, and realizing this approach wasn’t going to work.

The neighbor who first alerted me has experience trapping and rehabilitating
stray cats. She’s currently caring for an older cat and didn’t want to risk
exposing him to anything the kitten might carry, but she kindly lent me one
of her humane cage traps. I put the Churu-broth bowl inside, set the trap, then
went inside to rest for a bit.

When I checked a few hours later, the food was gone and I realized he was
too small to trigger the trap. To fix that, I placed a 3 Ib dumbbell on the
pressure plate, refreshed the food, and waited. About an hour later — twenty-
six hours after first hearing him — I finally caught him.

Figure 7: Tiny critter caught in a

cartoonish cage trap

The next day, I brought him to a vet to make sure he was okay. They estimated
he was about 8 weeks old and weighed only 1.59 pounds — on the low side for
his age. He also had infections in both eyes and both ears, and was absolutely
covered in fleas.

We started him on medication right away, and I kept him quarantined from my
other cat while he recovered. After a few weeks of treatment, the vet gave us

21

the all-clear, and we finally introduced him to my resident cat, and thankfully,
they hit it off. Have some pictures of them together.

Figure 8: Their first Figure 9: My other

meeting! cat started carrying him
around the house by the

scruff

Figure 10: They play

with each other in
a game almost like

“cat and mouse.” It’s

very entertaining to

watch them chase sleep on each other all the

each other at full time, using each other as
speed. pillows

Figure 11: The kitten has
been imitating my big cat,

including napping poses

Absolutely adorable. I love them both so much.

What was I doing before this again?

Oh. Right. 2048. Anyways, let’s get back to it!

22

8 The model got too locked in

At this point, I had managed to collect about 25 games for training — much
more than the 8 I started with, but still a tiny dataset compared to what most
machine learning models thrive on. Around then, I started to suspect that my
model was overfitting — in other words, it was getting too good at memorizing
the training data instead of actually generalizing to new games. This is not
ideal, because it means the model performs well on board states it has already
“seen” during training, but struggles or completely fails when faced with new
situations. To combat this, I added a dropout layer, which is a layer that will

randomly “turn off” some neurons so the model becomes more robust and is
less dependent on specific neurons. There’s a lot of improvement!

Average Score per Epoch
16000

14000

12000 / =
10000

| | \

6000

12345678 910111213141516171819202122232425262728293031 3233343536 37 3839 404142 4344 4546 47 484950

Maximum Tiles per Epoch
100

= Tile 0
- Tile 2
- Tile 4
- Tile 8
- Tile 16
- Tile 32
= Tile 64
Tile 128

80 1

60

Tile 256
Tile 512
—Tile 1024
= Tile 2048
== Tile 4096
- Tile 8192
. Tile 16384
- Tile 32768

. Tile 65536
20

12345678 910111213141516171819202122232425262728293031 32 33 34 3536 37 3839 404142 4344 4546 47 484950

Figure 13: Performance of the model as epochs increase

23

However, I still felt that my model is overfitting. To monitor this, after every
epoch (one full pass through the training dataset), I have the model play 100
games and record the average score as well as the distribution of the highest
tiles reached. This way, I could track performance over time and identify when
the model was actually improving versus just memorizing moves. At the end
of training, I stored the weights from the epoch with the best average score,
essentially picking the optimal epoch rather than blindly keeping the last one.

8.1 Brief interlude for the important graph that
requires an entire subsection to explain properly

I've been told that the bottom graph in Figure 13 is a bit difficult to understand,
so I'll try to break it down. Each bar shows the distribution of the highest tile
reached during games played at that epoch. The proportion of a bar that’s a
given color corresponds to the proportion of games where the corresponding
tile was the maximum. For example, at Epoch 36, around 7% of games ended
with 128 as the max tile, while approximately 30% of games reached 2048 or
higher.

Another way to read the graph is as a kind of “failure rate”: the label on each
bar tells you the percentage of games that failed to reach a certain tile. So for
Epoch 36, the model fails to reach 512 about 21% of the time, and fails to reach
4096 92% of the time.

Here’s the pseudocode for how the graph is generated, hopefully this helps if
my explanation wasn’t clear enough:

for each epoch:
tile distributions = {0, 0, 0,...}
for each game in epoch:
get max_tile created in game
tile distributions[max tile] += 1
for i in range(17):
tile value = 271
show segment of length tile distributions[tile value],
with color corresponding to tile value
show bar with these segments

S O 00NNV W N -

24

8.2 Back to the main content, where I re-attempt
finetuning

Average Score per Batch

17000

16000

15000 \

|
el U !I\ AW

13000

e RRAL

11000

I
Iy (NERR RN

9000

|
V

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72

Maximum Tiles per Batch

20

=28 = =R e =N | | || S =l
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72

Figure 14: Performance of the model as batches increase

With the finetuning that I had attempted earlier, I noticed that the average
scores reached by the model would dip a decent amount before they improved,
then they would start worsening again. Because of this, I essentially did the
same thing, where after each batch (a small group of training samples, in this
case 25 episodes, processed before updating the model’s weights), I test it for
100 games, then track the average scores. If no improvement is seen after 40
batches, I reload from the last best model, then continue from there. If it reloads

25

too many times in a row (8), I stop and end the training. Turns out, this actually
does lead to some improvement!

Avg Score Comparison Max Tiles Comparison
= Tile 32
I
Imitation Tile 128
]

Tile 512
. o
Finetuned Tile 2048
EEEEE =
. Tile 8192

k T T T T u T T 1
0 5000 10000 15000 0 20 40 60 80 100

Figure 15: Comparison between pure imitation and finetuned imitation

9 The end?

My model is still far from perfect, and to be honest I'm still not completely
satisfied with its performance. The finetuned version only reaches 2048 around
35% of the time, and since it was trained with imitation learning, it struggles
to recover once it makes a mistake. It also does badly if you drop it mid-game
where a human had been playing with a 90° or 270° rotation, since I excluded
those orientations from my training data. Looking ahead, I'd like to experiment
with models trained entirely through reinforcement learning without any of
my own gameplay data, and eventually implement a DQN* into my model.

But alas, summer has come to an end, and with it, the end of my free time —
and the end of my journal entry. Those are projects for another day.

This is my first ever journal entry, and thus, I have no idea how to end this.
Bye bye, thanks for reading, etc. The end!!!

10 Acknowledgments

Thank you so much to Kartavya for helping me proofread and polish this. Also,
huge thanks to Professor Campbell for double-checking my technical details
and saving me from embarrassing myself. Lastly, thank you — you, the reader,
for putting up with me long enough to reach the end of this paper.

*I explained what a DQN is in a previous footnote. Are you not reading my footnotes?!
My feelings are hurt.

26

D
Lk L‘f‘c} 3 :‘56(
s}\& QU"\ / [;“‘ 4 -

o oA dext

3

27

Ishan Goel 1 Roadside Gem

Acromathics

Ishan Goel

Math classes are highly structured, and they just hand you results. It’s
way more fun to explore math on your own. I want to take you on
three journeys, showing what it feels like to (re)invent math. The pre-
regs for this doc can change based on where you are, but not much
prior knowledge is needed.

1 Roadside Gem

I'm in my AP Calculus AB class, and we’ve just learned about partial

fraction decomposition. Here’s a reminder of what that is: if you have a

function that is the ratio of two polynomials, you can write it as a sum
1 1 1

of simpler fractions. For example, zz_ém% = e — 13

Anyway, I'm facing this problem:

1
d
/x2+1 v

... and I'm now a bit stuck, because I can’t really factor 2 + 1. Or...
perhaps I can.

r—3"

?+1=22—i=(z—i)(z+1)

(By now, some of you might be screaming at the page about the
integral being related to a certain trig function or whatever, but hey
shh for now). Anyway, let’s apply partial fraction decomposition:

28

Ishan Goel 1 Roadside Gem

1 A B
z24+1 x—i x+1
1=A(x+1)+ B(x—1)
Let z=1i=1=2iA
Let z=—i=1=—-2iB

1 _z(1 1)
2241 2\z+i z—i

Now we can evaluate the integral:

1 7 1 1
/xz—i—ldx_i/(ac—ki_m—i) dz

:%(ln|m+i\—ln\x—i|)+0

T+

r—1

+C

zéln

You would be right to question this. What does it mean to take the
natural log of a complex number? I have no clue. But hey, let’s just
assume this is valid and as a bit of a joke, you submit this wacky
answer as homework and move on to the other problems. (Turns out
you still get full points, but you suspect this is because your teacher
does not look too closely)

Also, let’s drop the absolute value signs. Like, at this point we’re
plugging in complex numbers, so negative numbers are the least of our

worries.
1) T+1
dr = =1 C
/x2+1 ! 2n(m—i)+

Later in class, I find out that the integral is actually a standard one
and that:

29

Ishan Goel 1 Roadside Gem

1
dx = arctan(z) + C
/ z2+1 (z)

I didn’t see this, and so now I had my own answer to the problem.
Let’s take a leap of faith and assume that my answer is valid. What

happens if we equate the two answers?

r—1

%m(w + Z) + C = arctan(x)
(only one constant is needed)

Hmm, very interesting. Something involving logs and complex numbers
on one side equals something involving inverse trig on the other. Maybe
if we could find the inverse of this function, we could find a new way to
represent tan(z). That would be interesting! But we need to find that
constant C' first.

(To be honest, at this point I put that expression into WolframAlpha
to find what C' is, but let’s pretend I didn’t do that and use a semi-
rigorous argument instead.)

Since the two expressions are equal, their limits to infinity must be
equal. Let’s take the limit of both sides as x — inf:

lim (%ln(x +Z) + C) = lim arctan(z)

T—r00 r—1 T—00
C’+1 lim ln(x—i_l,) =T
2 rz—o0 T —1 2

Hmm, we don’t actually know what that limit on the LHS is, but let’s
make the argument that as * — oo, the difference in imaginary part
“matters” less and less. So:

30

Ishan Goel 1 Roadside Gem

Crglmin(i5) =3
€+ limmn(7) =7
C+?MD=%
C+0:g

“C=3

Finally, we now have a solid new representation for arctan(x):

arctan(z) = %ln(x+z) + 72T

r—1

Isn’t that kinda cool? Yes we made some mildly shady arguments. But
they’re reasonable, and this is how discovery works. Come on, let’s just
see what happens. Let’s try and find what tan is. Let’s start by
introducing two new variables:

Define wu,v such that tan(u) = v
Then, arctan(v) = u
iln(v—i_i) +I =u
2 v—1 2

If we isolate v in the above equation, we’ll have a new representation
for tan(z). Let’s try:

31

Ishan Goel 1 Roadside Gem

)
)

2u—m=14ln

Qu_un<
=

i) =)
)

v+1
(7r—2uz—ln<
v—1
.) v+1
ewr72uz: '
v—1

Hold on a sec. Do you see that? If only we didn’t have that pesky 2ui
we may be able to find out the value of e!”! And that would be quite a
gem.

Well let’s try setting w = 0 and see what happens:

ei7r—2ui:U+Z

v—1

, v+

Set u=0=¢e"= -
v—1i

Welp. We don’t really know what v is. So we can’t find ™. Right?
Wrong! We know what v is since we defined u and v to be related by
tan. Since tan(u) = v, we know that when v = 0, v = tan(0) = 0. So:

i 041
0—1
pim — b
—1
el™ = —1

And there, we have found the gem. But the road goes on, and so I
strongly encourage you to carry on finding what tan is. It’s a fun
journey, and you rediscover Euler’s formula among other things along
the way.

32

Ishan Goel 2 Matrix Flow

2 Matrix Flow

This time we start in my third semester of college, in which I'm
learning at the same time about both differential equations and linear
algebra. Let me show you a cool link.

Let’s start by considering an example from 3B1B. Suppose we have
Romeo and Juliet, and two variables representing their love for each
other, r and j. Let’s say for some reason that Romeo loves Juliet more
when she’s being aloof, but Juliet’s normal and likes Romeo more when
he’s being nice. We can represent this with a system of differential
equations:

r" = —j (Romeo’s love grows when she’s aloof)
i=r (Juliet’s love grows when he’s nice)

Where the ” symbol represents the derivative with respect to time ¢.

Let’s first think about what we would expect the solution to this to
look like. If Romeo loves Juliet more when she’s aloof, and Juliet loves
Romeo more when he’s nice, then it seems like their love should
oscillate. When Romeo is being nice, Juliet’s love for him grows, but
then he gets bored and becomes aloof, causing her love to decrease.
This makes Romeo nice again, and the cycle continues. So we expect
some sort of oscillatory solution.

Let’s solve this system in whatever way we can. We realize that we can
get a connection between the two equations by taking the derivative of
either equation and substituting. Take the derivative of the first
equation:

r’ = _j/

Substituting for j' =r =

r’ = —r

33

Ishan Goel 2 Matrix Flow

Aha! Now we’re looking for a function whose second derivative is its
negative. You might remember that our oscillatory friends sin and cos
have this property. Let’s try r = sin t:

r =sint
r” = —sint
j=—r"=—cost

But actually, » = cost would work too. The full general solution, which
you can verify, is:

r = Acost + Bsint
j= Asint — Bcost

Where we choose A and B based on Romeo and Juliet’s initial

affections. You can verify r” = —r and j = —r’.

Let’s find what A and B are if we are given r, and j,, the initial
affections at time ¢ = 0.

rg =Acos0+ Bsin0=A
Jjo=Asin0 — Bcos0=—B

~A=r,

= B=—jj

~ T =1rycost — jysint
J=rgsint + j,cost

But you know, that felt a little unsystematic. What if we had some
more complicated system?

We’ll look at the same system in a different light in a second, but let’s
first take a detour to an unrelated® problem. Say we want to solve this
really simple differential equation:

r =X

What function is its own derivative? You might remember that z = et
works. Now let’s consider a slightly more complicated problem:

34

Ishan Goel 2 Matrix Flow

' =azx Eq1
Take a second to check that this solution works:

x = e™ Sol 1

Let’s now return to the original system, which I've copied here:
r=—j

j=r
Because we're trying to get a link to linear algebra, let’s try to collect r

and j into a vector x and try to write the system in the language of
matrices and vectors.

r’ _ _—j
i
Let = r]
LJ

,

T = it
T

Could we express that RHS in terms of 7 It’s already so close.
=7 _ {0 =1}|r
r| |1 0[|]|j
x' = 0 -1 x
|10
Whoa! Take a second to appreciate what that last equation is saying. If
we imagine = as a point in the 2D plane, this equation tells us that the

velocity vector of that point is a 90 degree rotation of the position
vector, naturally leading to a circular motion.

35

Ishan Goel 2 Matrix Flow

Already we see that this form gives us spatial intuition for the system.
But can it help us further? Sometimes, to see further, we must see less.
Let’s name that matrix A and obscure its components. Now the system
looks like this:

' = Ax

Aha! Doesn’t this look exactly like Eq 1 from before?! What if we could
solve it in the same way?

x = Ax

z 2 et
Well, is that it? Did we solve it? You should be flooded with questions.
What does it mean to exponentiate At, a matrix? How can you
multiply e by itself a matrix number of times? Obviously, this is all
nonsense... right?

Let’s create from scratch a way to exponentiate matrices.

First, do we even know what exponentiation is? Clearly, e? is just e
multlphed by itself twice. But what is e314? What is e™? What is eV2?
You're somehow okay with these, but do you really know what they
mean? You could argue that you can define exponentiation of the reals
using successive rational approximations, but a much cleaner way is to
use the Taylor series expansion of e®, which we’ll accept as fact.

2 3 2t

=l+a+ 45+ 4
We see that this definition involves additions and multiplications, both
of which we know how to do with matrices. So let’s just use this
definition to define matrix exponentiation. Let M be a matrix. Then:

M 2 M3 Mt
=14+M+ — + B + ar + -

But careful! For this equation to type-check, we’ll replace 1 with the
identity matrix I. Now we can *define® matrix exponentiation as:

36

Ishan Goel 2 Matrix Flow

M2 M3 Mt
—I+M+T+?+—+

Now we can finally evaluate e4t. Let’s try it out. First, let’s compute a
few powers of A.

=15
4% = __01 —01]
A% = _—01 (1)]
At = (1) (1)] —1

AS=A

Where we can see that A is just the 90 degree rotation matrix, and so
its powers cycle every 4 applications. Now we can compute e4?

(At) (At)* (Ap)*

At =T+ At + tog Tt
A2t2 A3t AYt
=1+ At+ TRRTRR T
10 0 —-11 t®[—=1 o0 0 1 10
_[]HL 0]+§[o —1]+3[10]+41[0 1]+"'
B s o Rt
L+t 1-L 45—

_ |cost —sint

~ |sint cost
Where we recognized the Taylor series expansions of sin and cos in the
last step.

37

Ishan Goel 2 Matrix Flow

Some of you may recognize this matrix as the rotation matrix that
rotates a point by ¢ radians. This makes sense, since we know the
system should produce circular motion, but it also hints at a
connection to Euler’s formula, since e = cost + isint also represents a
rotation in the complex plane, and ¢ is a complex analog of our 90
degree rotation matrix A.

Finally, we can write down the solution to our original system:

x = et
At cost —sint

et =1 .
sint cost

Oh no! We know z is a vector, but our solution is a matrix!? Is all hope
lost? I did think so for a couple days, until I realized that the complete
solution to:

is actually

T = rye
Where z is the initial condition (value of z at ¢ = 0). Perhaps we can
fix our type issues by introducing a constant vector ¢ storing the initial
conditions:

x = edte
Let ¢ = T.O]
1 Jo

[cost —sint] [r,
LT = . .

|sint cost | |Jo
_ [rocost — jgsint
 |rosint + jgcost

Finally, our solution is:

38

Ishan Goel 2 Matrix Flow

T =1ryc0st — jysint
Jj=rgsint + j,cost

Which exactly matches our previous solution! Hooray! While this seems
more systematic, and it definitely has the seeds of generality, we still
had the unsystematic part of the actual matrix exponentiation, where
we relied on recognizing Taylor series. If we could just systematically
exponentiate matrices, we could solve any system of linear differential
equations!

Enter diagonalization!

Diagonalization is a method to factor a matrix into a product of three
matrices such that the middle one is a diagonal matrix (zero
everywhere except the main diagonal). The reason we care about
diagonal matrices is because many computations, including raising
them to powers, become trivial. For example, if D is a diagonal matrix:

a00
D=10b0
00c
Then:
a® 0 0
D= [0 b 0
0 0 ¢»

Based on this property, we can see that the exponential of a diagonal
matrix is also easy to compute:

39

Ishan Goel 2 Matrix Flow

D? D3 Dt

D __ - - i
e’ =I+D+p+or+r+
l+a+ %+ %+ 0 0
= 0 1+b+5 +5 +-- 0
0 0 lte+g+5+
fea 0 0
=10 ¢e 0
10 0 e

I like to think of diagonal matrices as having no interactions between
different dimensions (no "cross-terms"), which is why we can simply
exponentiate each dimension separately.

We would really like all our matrices to be as easy to exponentiate as
diagonal matrices, thus motivating ‘diagonalization’

To build up to that concept, we first need intuition for eigenvalues and
eigenvectors. An eigenvector of a matrix M is a vector that only gets
scaled when multiplied by M. The amount it gets scaled by is called
the eigenvalue. If v is an eigenvector of M with eigenvalue A, then:

Muv=M\v

Why do we care about eigenvalues and eigenvectors? It’s because this
scaling property is super useful. For example, let’s take this matrix:

2 0 0
M=]1 4 -1
—2 —4 4

It has the following eigenvalues and eigenvectors:

40

Ishan Goel 2 Matrix Flow

—2
A1:2 Ulz 1
| 0
1
_1
[0
_—2

Verify for yourself that Mv, = A\,v; for i =1,2,3.

Because of this property, it’s easy to evaluate the result of a vector
being transformed by M if we can write it as a linear combination of
the eigenvectors. Specifically, if:

T = avy + bvy + cvs
Then:

Mz = M(av, + bvy + cvg)
= aMv; +bMvy + cMug
= aX vy + bAyuy + cA3vg
= a(2)v; + b(2)vy + ¢(6)vy

This gives us a hint at how to diagonalize M. To evaluate Mz for any
vector, we first need to break z down into its eigenvector components,
scale each component independently, and then recombine them. We can
express this process in matrix form. Let P be the matrix whose
columns are the eigenvectors of M:

P=|1
0
Clearly, this matrix would do the recombination step (going from the

scaled eigenvector components to the transformed vector). The scaling

41

Ishan Goel 2 Matrix Flow

step is done by a diagonal matrix D whose diagonal entries are the
eigenvalues of M since each one happens independently. Now, we just
need to come up with the matrix that breaks z down into its
eigenvector components. This matrix is simply the inverse of P,
denoted P~!. The intuition is that P takes in eigenvector components
and outputs the vector, so P~! must take in the vector and output the
eigenvector components.

D=

S o N
SN O
SO O

Putting it all together, we have:

Mz = PDP 1z

~ M =PDP!
In this case:
(21 0
P=1|1 01
_O 1 -2
(200
D=1020
_006
1 —-12 1
P‘lzz 2 4 2
1 2 -1
2 0 0
M=PDP1=1]1 4 -1
—2 —4 4

This is a beautiful result. But is it useful? Well, let’s see what happens
when we try to exponentiate M if it has this factorization:

42

Ishan Goel 2 Matrix Flow

—1
eM _ PDP

(ppPY)? (pDP')’ (PDP)!
T R TR

PD*p! PD3p! PDipP!
T TR A TR

=1+ PDP '+

=1+ PDP ' +

D2 3 D4 o
:P<I+D+7+§+E+'“>P
= PePpt

On the second step we used this result:

(PDP_l)n = PDP'PDP'...PDP~! = PDD--DP~! = PD"P!

Awesome. If we can diagonalize M, all we have to do is replace the
diagonal matrix D with its exponential, which is easy to compute.

It might seem that this operation only works for some matrices, but in
fact, there’s a sense in which a random matrix can almost always be
diagonalized. Let’s try diagonalizing A from earlier, and check if we

again get the same result for e4?.
0 —1
=i 3]
Eigenvalues: A\, =1 Ay = —1
Eigenvectors: v, = ’ Uy = !
1 1
[0 —i
P= 11]
[i 0
o-[i

43

Ishan Goel 2 Matrix Flow

Verify this factorization on WolframAlpha.!

Now we can compute e4t:

eAt — PeDtpfl

i —i]fer 0]1[—i1
T 11 0 e |24 1
i —i||—iett et
1 1 |]|ze %t eit

eft +e~it j(eit — e~it)
|:_Z‘(eit —e7it) it 4 et]
eit 1 e—it i(eit — eit)
(2
2 %(eit _ e—it) eit 4 e—it

__|cost —sint
~ |sint cost

Verify this on WolframAlpha.?

As expected, this gives us the 2D rotation matrix again! Now, let’s
recap our method for solving systems of linear differential equations
powered by exponentiating matrices.

1. Write the system in matrix form 2z’ = Az
. Diagonalize A into A = PDP~!
. Compute e4t = PePtp—1
At

2
3
4. Write the solution as z = e”'z
5

. Plug in the initial conditions directly into z, and the answer pops
out.

https://www.wolframalpha.com/input?i2d=true&i=%7B%7Bi%2C-1%7D%2(%7B1%2C1%7
%7D%7B%7B1%2C0%7D%2C%7B0%2C - 1%7D%7D%7B%7B-1%2C1%7D%2(%7Bi%2C1%7D%7D*0.5
2https://www.wolframalpha.com/input?i2d=true&i=simplify+%7B%7Bi%2C-i%7D%2(%
7B1%2C1%7D%7D%7B%7BPower%s5Be%2Cit%5D%2C0%7D%2C%7B0%2CPower%s5Be%2C - it%5D%7D%7
%7B%7B-1%2C1%7D%2(C%7B1%2C1%7D%7D*0.5

44

https://www.wolframalpha.com/input?i2d=true&i=%7B%7Bi%2C-i%7D%2C%7B1%2C1%7D%7D%7B%7Bi%2C0%7D%2C%7B0%2C-i%7D%7D%7B%7B-i%2C1%7D%2C%7Bi%2C1%7D%7D*0.5
https://www.wolframalpha.com/input?i2d=true&i=simplify+%7B%7Bi%2C-i%7D%2C%7B1%2C1%7D%7D%7B%7BPower%5Be%2Cit%5D%2C0%7D%2C%7B0%2CPower%5Be%2C-it%5D%7D%7D%7B%7B-i%2C1%7D%2C%7Bi%2C1%7D%7D*0.5

Ishan Goel 2 Matrix Flow

We made two leaps of faith: first, we assumed that the solution for a
single variable differential equation z’ = ax generalizes to the matrix
case ' = Az, and second, we assumed that matrix exponentiation is
defined via the Taylor series expansion. We see that making reasonable
choices in our leaps of faith lead to beautiful truths.

45

Ishan Goel 3 Taylor Might

3 Taylor Might

I remember Watchingda 3BluelBrown video that ended on the massive
clifthanger of what ed=z is (in words, the exponential of the %
operator), and so let’s explore that.

To simplify things, let’s use Heaviside’s notation for the derivative
operator.

d

D=—
dx

What’s an operator, you ask? It’s just something that takes in a
function and spits out another function. For example, applying D
(same as %) to the function z? gives 2.

As usual, let’s start by expanding e?:

D* D D!
P =14+D+ —+—+—

or Tyt T

Does this maybe feel like an abuse of notation? Like, we’re just using
this Taylor series expansion in a way it’s not meant to? It should. You
could understandably scoff and say that this is complete nonsense. But
again, let’s just be reasonable whenever we run into problems, and see
what happens.

Here’s a bunch of questions you might reasonably ask (in order of
decreasing obviousness)

1. What does multiplying two operators mean???

2. What’s addition??

3. And what does multiplying by a scalar do?

Okay now let’s come up with some reasonable answers.

1. Let’s say that multiplying operators means applying them in
sequence.

46

Ishan Goel 3 Taylor Might

d2

D?=DD =~
dz2

2. Let’s say that adding operators means applying them and adding
the results.
(D* +2D +1)sinz = D*sinz + 2Dsinz + sinz
= —sinz + 2cosz +sinx

=2coszx

Ah, but also (D? 42D + 1) = (D + 1), so let’s confirm that gives
us the same answer:
(D+1)?sinz = (D+1)(D+ 1)sinz
= (D+1)(cosz +sinx)
= (—sinz 4 cosx) + (cos z + sin)
2cosx

Wow, maybe we have some good stuff here.

3. I kind of already used it for the second one’s answer. It’s pretty
obvious:

(1) f(z) = f(=)
(D) f(z) = m(Df(x))
Finally, armed with these reasonable definitions, we now know what

this operation means. We don’t yet know what it actually does, but we
can evaluate it.

D? D3 D4
—1+D+?+?+T+

(Oh, btw, that 1 is an operator. Consider it the identity operator.
Don’t be fooled!)

Let’s apply it to a couple functions and see what happens.

47

Ishan Goel 3 Taylor Might

D? D3
ePr = (1)x+(D)x+(2')33 +(3'):6 + -
=z+1+0+0+ ...
=x+1
D?)z? D3)z?
eDaczz(l)w2+(D)w2+(2!) —i-(3!) + -

=242z +14+0+...

= (z+1)?

D2 x D3 x

(D2)er (D)e
2! 3!

ePe® = (1)e* + (D)e* +

1
— (1+1+ +3,+ +)

= e%e
=€z+1

Perhaps you are noticing a pattern by now... Let’s try something a bit

harder. Let’s try e® sin z.

(D*)sinz (D?®)sinz N

ePsinz = (1)sinz + (D) sinz + o + 3
sinx cosxr —sinx —cosx
] to Tt 3!
sinx cosr —sinx —cosx
o s T e T

. 1 1 1 1 1 1 1 1
Smw<ﬁ§+5_§+ >+cosw(—‘——+—__'+...)

Hmm, do those infinite sums look a bit familiar? Let’s remind ourselves
of the Taylor series expansions of sin and cos:

48

Ishan Goel 3 Taylor Might

_ 3 2 2T
sm:v—:c—g—kﬁ—ﬁ—i—
_1q 2 xt 2b
coszT o1 +I a+
. gin] — 11 1 1
- sin _ﬁ_i_‘_ﬁ ﬁ_*_
‘ = 1 1 1 1
S COS a——'i‘g a-i-
Thus:
ePsinz =sinxcos1 + coszsinl
sin(z + a) = sinz cosa + cosxsina (angle sum)

ePsinz = sin(x + 1)

Wow. Look at that simplification! That’s crazy. Wow it really does
seem like:

ePf(a) = flz+1)

Pretty odd. And it seems like Taylor series play a big role. Maybe we
can figure out if this fact is generally true by assuming we have a series
representation of some function f(x) and then applying e” to it. Let’s
try that.

Let’s say that f(z) has a certain series representation:

f(x)—a0+a1x+—x +3By3 4

3|
f(z) =ay +ayz+ aw + 3' S
[’ (z) =ay +agx + EZL‘ +5 3' 4
>\ a
oo (k) = _TL-‘rk‘ n
P =2 =

Now let’s apply e” to f(z):

49

Ishan Goel 3 Taylor Might

e’ f(@) = f(@) + f'(@) + 5= + 5+
_ oo an > Ant1 1 Ap42
I s I
n=0 n=0
iﬁa'_a + n+2+ n+3+
- — | n n+1 9! 3|
n=0<n! per L

Hmm, we don’t really know what that innermost series is. I spent a
couple minutes looking at it until I realized the following:

o0

(As shown) f®)(z) = Z %m"
n=0 '

This is almost the form we want. Now let’s rename n to k and k to n
to get this:

Convince yourself that renaming is a valid move. Now we can
substitute this into our expression for e? f(x):

n=0 k=0
[e%¢] " .
= Z_% —

50

Ishan Goel 3 Taylor Might

This is beginning to look a lot like a Taylor series expansion, except we
seem to be missing the shift. Or are we?! Look:

S-S = =)

i ((z+1) —1) (1)
flz+1)

That series perfectly matches the Taylor series expansion of f(z + 1)
centered at 1. So it seems like we have a general result. If f(z) has a
series expansion with center 0, then:

e f(z) = flz+1)

It’s easy to see that we can extend this to any center ¢ by constructing
a new function g(z) = f(z + ¢) and then applying the above result to
g(x). Thus, if f(x) has a Taylor series expansion, applying the
exponential of the derivative operator to it shifts the function by one!

A natural question to ask at this point is whether we can create any
shift. For example, it’s easy to see that applying e” twice should shift
f(z) by 2. But also:

Peb f(z) = (e)* f()
flz+2) £ 2P f(x)

Huh. Based on this, we can see that it could be reasonable to
conjecture that:

e*Pf(z) = flz +3)

If we go through the earlier proof again but with s this time, it’s not
hard to see that:

D f(z) =i$_<m n+k Sk)

o1

Ishan Goel 3 Taylor Might

Also not too hard to see that:

Fs) = 3 ot
And so:
P (o) =3 LEED = g
n=0 :
= f(z +3s)

Thus we have this general result. If f(z) has a Taylor series expansion,
then:

e*d: f(x) = f(z + s)

Wow! Scaling the derivative operator by some number, then applying
the exponential of that operator to a function, shifts the function by
that number. Isn’t that beautiful?

Why might this be useful? Great question. I guess, for example, you
could derive the angle sum formula. Do let me know if you think of
something. But also it’s kind of just pretty.

More abuses of notation to consider:
e'P f(x) < (cos D +isin D) f(x) < f(x 4 i) Pretty sure this is fine
(eD)ff(a:) < (eDf)f(a:) < ef(x) Nonsense
ePe Pf(z) = f(x) Definitely true

Try the first one! Another thing to try is to prove that the shift
operator works for monomials without using Taylor series. You can
then extend that to polynomials and then to all functions with series
representations.

52

Ishan Goel 3 Taylor Might

But I do want to remind you that notation abuse doesn’t always work
out:

elm et = 1

ei7rD ; e—iﬂ'D

One side shifts functions by 7 and the other by —im, so it’s definitely
not true. (Do you see why it works in one case but not the other? Hint:
inverse.)

I still think most people are too abuse-of-notation averse, so I
encourage you to try that. Have fun and play responsibly!

53

54

OooOoonO

How o HOT build a gane
controller 1N 10 easy

steps

X
By Alexander Kutulas C)C)
Y) (A)
December 11, 2025

Have you ever wanted to NOT build a game controller? Well don’t worry; you've
come to the right place! In just 10 EASY STEPS, you’ll be able to NOT build all the
game controllers that you desire. And by all the game controllers, I mean just a
single custom game controller called a Wii Baton, which is just a Wii Remote except
with the A button, the 1 Button and the 2 Button replaced with a poor motion
mapping system that is ONLY useful for playing Mario Kart Wii. So without further
ado, “let’s-a go!”

Figure 1: Picture of NO game controller

55

1. Design a 30 model without understanding
AMNYTHIMNG about constraints

& AutoConstrain

J¢ AutoConstrain from datum
I Horizontal/Vertical

___ Coincident

) Tangent

Parallel
X
(5 Fix/UnFix
/\ MidPoint

‘0) Concentric

Equal

Perpendicular

w" Collinear
=

_i] Symmetry
= Curvature
_ Polygon

Figure 2: Constraints in Fusion 360

56

5,00

fx: 12.00

fx: 12.00

Y Y

Figure 3: References in Fusion 360 (each
‘fx” indicates a reference, which is why
the dimensions are shared; changing the
dimension being referred to will change

all of the references)

Figure 4: Trying to Frankenmesh
separately designed parts together

1. Design a 30 model without understanding
AMNYTHIMNG about Eun*_i._'_l'ra.i.nfs.

First, you’re going to want to design the body for your controller whilst thinking
you’re a Fusion 360 (a 3D CAD, Computer Aid and Design software) hotshot,
having designed approximately 3% models in the past. Completely ignore incredibly
useful features such as constraints (Figure 2), which help with alignment and
positioning, and references (Figure 3), where you can have dimensions equal one
another — by selecting the dimension that you want to edit and then selecting the
dimension that you want it to equal - because you don’t know they exist. In
particular, constraints such as:

« Coincident (constrains the position of two points together)
« Parallel

+ Horizontal/Vertical

+ Midpoint

» Symmetric

are incredibly useful, so make sure to avoid these! Finally, make sure to underuse 2D
sketches; these are a core component of 3D design where you first design in 2D and
then extrude your sketch outwards to add thickness, making it 3D. They can make
your model more precise and easier to edit, and we wouldn’t want that, so instead
pretend you’re using Blender and sculpt using the extrude and push/pull options in
3D mode to Frankenmesh your parts together (Figure 4) instead of making exact
measurements in sketches.

57

nnnnnnn

ssssss

58

Z. Panic regardimng sensor fusion

m DEN
u|00000
'_@ [

(7, T o
1o OEEE = H

INT2 DRDY

1= ozl
..'_w°*rmrzum

® 3v3 scf’ cs?c SDOAG
.OOO oo-,--;
- VIN _GND SDA CSM_SDO

M

Figure 5: Adafruit LSM9DS1 9-DOF sensor

eeeeeeeeeeee

Figure 6: MotionCal sensor calibration software

Z. Panic regarding sensor fusion

Next, assuming that you’ve already spent way too much time idly stripping wires
while staring at a breadboard, you’re going to NOT want to combine your 9 degrees
of freedom of data (3 axis magnetometer, 3 axis gyroscope, 3 axis accelerometer)
from your Adafruit LSM9DS1 sensor (Figure 5). Using the axes independently is
much better, as the gyroscope drifts, the accelerometer is impacted by external
accelerations like gravity and the magnetometer is susceptible to local magnetic
disturbances, so if you don’t:

« Represent the sensor’s orientation using a quaternion, a 4D number like
q=w+xi+yj+zk, where w represents the magnitude of the rotation and
X, y, and z represent the axis of rotation

« Predict the new orientation using the gyroscope data

« Compare the prediction’s gravity and magnetic north vectors to the measured
gravity and magnetic north vectors. The difference is the error

+ Adjust the quaternion J times to minimize the error (gradient descent)

then your sensor data will be extremely inaccurate, thus impairing your ability to
make a game controller using those sensors. And while we’re at it, make sure to
forget to calibrate your sensor! Definitely don’t use incredible open source
calibration software like MotionCal (Figure 6), that will take measurements as you
rotate and move your sensor 9 different times (1 for each axis) and create a
calibration sphere as you go, showing the values that your sensor is taking as a
reference, as well as showing you where you might still need to calibrate.

'Explanation based on my understanding of a Madgwick filter; for more in-depth information
read someone else’s explanation, like Sebastian Madgwick’s [1]

59

S. Implement a complicated finite state
machine and subsequently fal-;g a month nff_

Harm ok Iromdn +a scall

Figure 7: Diagram representative of the quality of my state machine code

60

S. Implement a complicated finite state
machine and subsequently faHE a month uff_

Now that you've got a poor 3D model that you will most assuredly have to redesign
and wildly inconsistent sensor data, it’s time to write overly complicated state
machine code®! For example, track the state of the motion of your arms while
running and classify these motions between 5 different states:

1. IDLE

Gk D

UP_FROM_IDLE_TO_UPPER_PEAK_FRONT
DOWN_FROM_UPPER_PEAK_FRONT_TO_LOWER_PEAK
UP_FROM_LOWER_PEAK_TO_UPPER_PEAK_BACK
DOWN_FROM_UPPER_PEAK_BACK_TO_LOWER_PEAK

and make sure to utilize lots of arbitrary constants to make the distinction between

states, such as:

const
const
const
const
const
const

float IDLE ENTRY MAG THRESHOLD = 1.5f;
float IDLE EXIT MAG THRESHOLD = 2.5f;
float SIGNIFICANT DROP_FROM PEAK = 1.0f;
float SIGNIFICANT RISE FROM VALLEY = 1.0f;
float TREND DETECTION SENSITIVITY = 0.3f;
int MIN _POINTS FOR PUMP = 10;

that will make it incredibly difficult and overwhelming to work with the codebase!

*I ended up scrapping this approach in favor of just normalizing and detecting motion in general
for simplicities sake

61

4. Attempt o solder in the air because
"who meeds PCBs angway'

62

Figure 8: Home soldering setup

/) i v il
A 3
W 1 : S

Figure 9: Well that could’ve gone better

4. Attempt o solder in the air because
"who eeds PCBsS af_l_l_-p.ua-_-l'

Now time to put it all together! Let’s solder it all together by hand in the garage
(Figure 8) on top of one of mom’s ceramic pot lids that you found. We're using
mom’s ceramic pot lid as a base because soldering joins metallic connections by
melting a filler metal (fittingly named ‘solder’®), and ceramic, surprisingly enough, is
not metal, meaning that the solder won’t join itself to the base. We can also use
mom’s ceramic pot lid as a substitute for a printable circuit board (PCB).

A PCB functions as a great base for electronics projects, with tools such as
footprints, schematics and the PCB editor that allow you to design a board to fit
both your physical and electrical specifications. Footprints define the physical
layout of electrical components; for example how big something is or how far apart
pads (electrical connection points, often represented as a gold circle) on components
are spaced. Schematics are where you design your electrical circuit, defining what
is connected and where. Finally, the PCB editor is where you put it all together,
placing and aligning your electrical components on your board. Different parts of
the board will go on different layers of your PCB. Your pads will likely go on a
mask layer, where solder mask will not be applied, allowing you to solder to your
pads. The electrical connections that you made will take on the form of traces,
copper paths that provide conductance between electrical components and which
will be on a Cu (copper) layer. Any text or outlines will go on a silkscreen layer,
which is essentially an ink coating that provides more information regarding your
PCB. After you’re done designing your PCB in an incredible open source software
like KiCad, you can get it fabricated from a manufacturing company such as
JLCPCB and then use it in your hardware projects!

All of this is exceedingly useful, so make sure to avoid designing and using a PCB
and instead solder everything messily in the air with tons of wires so that it won’t fit
into your small 3D model! Components will shift around (Figure 9) and the single
wire that you plan on using for ground gets really hot every time you try to solder
to it and so you’ll accidentally burn yourself a couple times, which should help
discourage you from making a game controller.

*Note that solder does contain lead which can increase the risk of lung cancer if inhaled; if you
plan to solder, I would recommend doing it in a well-ventilated space and use a fume extractor if
you have one

63

9. Design the PCEBE oo big because uyou
extrude the 30 model body THUARDS instead
of OUTWARDS

y: —2.400 mm
r: 2.400 mm

- a
Without Inside E:n:trﬂds'l?:g'o With Inside Extrusion

RRLE
o ©
) cocoo

Oooooooo ool

)

O GOGOGOOOOOGGGGOO
[+]
3]
)
0

L]
O GGDOOGGGDGQGOGDO

Figure 10: 2.4mm off? I'm sure it’ll fit, you just gotta jam it in there

64

9. Design the PCBE oo big because uyou
extrude the 30 model body THUWARDS instead
of EIJTI-'«II'—'IIHJE___

If you still haven’t failed to fail making a game controller at this point, you might’ve
gone against my earlier advice and designed a PCB to make soldering easy and fit
components inside your 3D model. In that case, don’t export a DXF file from Fusion
360 and import it into KiCad via File > Import > Graphics to properly size your PCB,
or, even if you do, make sure to forget that you extruded your 3D model INSIDE
when adding thickness to the model. This will ensure that the PCB doesn’t fit inside
(fig 10), and successfully aid you along your quest to not build a game controller.

65

6. Space the holes for your ESP3Z 2. 7mm
instead of the breadboard—standard 2. 5<3mm

66

K T —
o,

Figure 11: I prefer my pins at 45° angles

6. S5pace the holes for your ESP3Z 2. 7mm
instead of tHthe hreadh-nar‘d—f._fandard 2.54m|_1_1_

Even if you decide to remake your 3D model to fit your PCBs, make sure that when
you design your footprints that you find a way to ignore KiCad’s grid and
incorrectly space your pins for your ESP32 microcontroller — an Integrated
Circuit (IC) that contains key modules such as Bluetooth and Wifi — by about
0.2mm. Definitely at this point you should succeed in failing to make a game
controller and not try to bend the pins into the PCB (Figure 11).

67

¥. Have your computer shuat dovn when gyour
circuit is connected via USB because
tHhere's a short

= 200Uy
A 2m|

20m|
Jom

200k

/,
e S - o 2 2K Q
N as 200 2K

10A COM o

200m\
10A\

Vs

Figure 12: short

68

¥. Have your computer shuat dovn when gyour
circuit is connected via USB because
Hhere's a shn_r_'_f

Next on the agenda is to solder GND (the path of least resistance) and 5V (POWER)
together on your Adafruit Miniboost — another microcontroller to boost the
voltage and current of a power input — and then NOT do a continuity test using
your digital multimeter. Continuity tests are typically done to ensure that
connection points like pins and pads are electrically connected, as well as to ensure
that they AREN’T connected to each other. The multimeter in fig 12 is currently set
to continuity mode; in this mode if you touch the ends of the probes to pins/
components the multimeter will beep if they are connected*. This will ensure that all
of the electrons rush out of your laptop to go party at Miniboost’s place along the
trace highlighted cerulean (Figure 12) and then cause your laptop to shutdown.

“DON’T do continuity tests while the circuit has power; this could damage your multimeter or
possibly even the circuit itself. This is because during a continuity test the multimeter outputs a
small current, and so if the circuit is live you can create a short depending on how you insert the
probes into the circuit

69

5. Realirze that bluetooth doesn' + work
because apparently RF zones on PCBs are a

70

Figure 13: The ESP32 wants to be CLOSE friends with the GND vias and the
LSM9DS1

Figure 14: No more friendship; social distancing

5. Realirze that bluetooth doesn' + work
because apparently RF zones on PCBs are a

Hthimg

Next, if you placed your ESP32 antenna (the square wave looking thing in Figure 13)
near copper (e.g. ground vias) or other components like the LSM9DS1 so the
antenna could have friends, you’ll be in good shape. Copper placed in the path of the
signal can cause impedance, reflecting part of the signal or causing it to take
inefficient paths, and components like the LSM9DS1 can create additional noise
when communicating using the I2C (Inter-Integrated Circuit) protocol. The 12C
protocol utilizes 2 main lines (buses) of communication; the clock (SCL on

Figure 13) and the data line (SDA on Figure 13). The clock is used to synchronize
data transfers between the sender and receiver, and the data line contains the data
and an ID to identify the sender. In the process though, if the clock is high speed
enough it can create noise. All of these can interfere with the Bluetooth signal,
meaning they’ll help you be well on your way to NOT making a game controller.
However, if you actually wanted to make a game controller, you might want to
remove your LSM9DS1 from your PCB by giving it a quick buzz cut (mangling the
pins) to get it out of the PCB and practice social distance with the ESP32 by moving
them away from one another using wires (Figure 14), but we don’t want to make
game controllers, so there’s no need to do that.

71

9. Break the MKWii phyusics erngine by
ftampering with the speed

Figure 15: Welcome to the Wonderful World of Power PC Assembly

Figure 16: New YouTube Challenge Run: Can you beat Mario Kart Wii if you can’t
move from the start line and the game is rotated 180° for some reason?

72

9. Break the MKWii phusics erngine by
ftampering with 1'h|g-__ speed

If you somehow succeeded in getting the PCB assembled and functional, there’s still
plenty of software issues for you to fail at. For example, adjusting the speed of your
character using Dolphin Emulators’ built in cheat code system for the Gecko
processor on the Wii. These gecko codes allow you to inject machine code into
specified memory regions to execute during gameplay and are a great way to crash
the game or cause an error state! Most memory addresses aren’t safe to inject code
into, but there are a few hook addresses where it is safe to inject machine code, so
make sure to avoid hook addresses like 0x80571CAA4. If you inject your assembled
PowerPC Assembly code ([2]) at 0x80571CAA4, the program will be in a state where
you can edit the base speed of your kart by writing to memory (shoutouts to
JoshuaMX for his code that does just that [3]). Don’t worry though; you still have a
chance to crash the game! If you write an ‘invalid’ speed value, you’ll break the
Mario Kart Wii Physics Engine (Figure 16), so make sure to avoid valid values such
as:

+ 0 km/h = 0x0000

« 5km/h = 0x41C8

« 50 km/h = 0x4248

« 100 km/h = 0x42C38
+ 150 km/h = 0x4316
« 200 km/h = 0x4348

Also make sure to avoid incredible tutorials such as Vega’s The Basics of Wii Cheat
Codes & the Gecko Code Handler [2]; these will describe the Gecko code system in
incredible depth, discussing useful commands such as C2XXXXXX 000000YY,
which will inject YY lines of assembly at memory address 80XXXXXX (80000000 is
the start of the memory address block used in the Wii for games).

73

10. "Fits' of frustration

Figure 17: “It’ll fit if you try hard enough”

Figure 18: Soldering iron meets PLA

74

10. "Fits"'" of fr'LE‘I'r'_a‘l'.i.un

If - by some manner of ungodly determination and will — you have made it this far
without having succeeded in failing to make a game controller, then frustrations
during the assembly process may aid you in your quest. Hopefully your tolerances
will be slightly off, with buttons being automatically pressed by front covers and
edges not lining up (Figure 17). Don’t use your soldering iron to make the back
button fit (Figure 18) or redesign your front cover to elongate the DPAD because you
misplaced the buttons on the PCB.

75

Conclusion

By this point, I hope you’ve managed to fail in making a game controller. If, against
all odds you have not, I'm truly sorry; perhaps throwing your completed controller
against the wall may help? Otherwise, you might as well make the most of it and
use your new controller to do a literal Mario Kart Wii speedrun.

After all, you’ve succeeded: in failing spectacularly.

76

References

[1] Sebastian Madgwick, “An efficient orientation filter for inertial and inertial/
magnetic sensor arrays.” [Online]. Available: https://courses.cs.washington.edu/
courses/cse466/14au/labs/14/madgwick_internal_report.pdf

[2] Vega, “The Basics of Wii Cheat Codes & the Gecko Code Handler” [Online].
Available: https://mariokartwii.com/showthread.php?tid=434

[3] JoshuaMK, “Max Speed Modifier” [Online]. Available: https://mariokartwii.com/
showthread.php?pid=3906

Special thanks to Grace for encouraging me to stick with the project and answering a
ton of my questions along the way, to Hazel for the PCB Design advice and board
review, and to Kartavya for reviewing this artifact and providing invaluable advice.

77

https://courses.cs.washington.edu/courses/cse466/14au/labs/l4/madgwick_internal_report.pdf
https://courses.cs.washington.edu/courses/cse466/14au/labs/l4/madgwick_internal_report.pdf
https://mariokartwii.com/showthread.php?tid=434
https://mariokartwii.com/showthread.php?pid=3906
https://mariokartwii.com/showthread.php?pid=3906

78

Self-Improvement,
Habits, and iPods

The Tinkerer's Guide to Ditching
Your Phone

Grace Yoder

| wouldn't say I'm addicted to my phone, but | also wouldn't say | have a
healthy relationship with it. Like most people, | spend more time than |
would like on my phone doing a variety of unhealthy behaviors. | spent
so much time on my phone that at some point | turned off Screen Time
tracking because | didn't like seeing how many hours | was spending
on it. A typical day for me would typically include 7-10 hours of phone
usage and over 100 pickups — that's about once every 10 minutes for
all my waking hours.

Using my phone this much just feels gross. | didn't like the feeling
that every waking moment of my life | was drawn to this magical
computer slab in my pocket the same way a moth isdrawn to light. Any
moment of downtime would immediately be sucked up with a billion
different apps and websites all trying to get me to stay there as long
as possible. At the same time, | couldn’t just get rid of my phone. My
phone is a miracle device that can and does add significant value to my
life. This device can connect me with people from across the world in
real time, it knows where | am down to the meter, it can tell me exactly
where to go when | get lost, it can capture a moment in time for me
to look back at, it can let me into my building when | return home, it
teaches me new ideas, and it allows me to learn more about the world

79

I am in. It does all of that while fitting in my hand. | can't just get rid of
it, as my life (and modern life in general) is built around it, but | need
to be healthier about it.

Now, | am not the first person to express these thoughts. There are
many ways to go about reducing unhealthy habits while still keeping
the utility of your phone. About a year ago, | met up for lunch with a
friend that | hadn't seen for a while. At one point, he pulled out his
phone and the way it looked shocked me. | asked him about it, and
he showed me how he set his phone to black and white, gotten rid
of all the apps on his home screen, and set a 15 minute limit on most
trivial and unhealthy apps, all to help him reduce his dependence on
his phone while still keeping it. | would consider to be drastic action,
and many people are just able to set reasonable limits on their usage.
| tried both reasonable limits and this more intense limit, but it wasn't
enoughforme.lflsetitup, | could also bypassit,and having everything
still be there is too tempting for me. | had to do something that would
be harder for me to get around.

When SIGHORSE was announced, | decided to partake in a very
ambitious project: fully getting rid of my phone. To do this, | would
need to reorganize my life and replace all functionality of my phone
with other devices. | think this is objectively one of the worst way to
go about breaking habits, but | also knew this would allow me to see
things in my life that | would otherwise be blind to.

Spoiler: | was not able to get to the point of leaving my phone at
home at any point during this summer. However, | am prepared to do
just that when the semester starts, and many of my bad habits have
been changed or even fully broken.

So What Am | Actually Going to replace

There is a short list of the main useful functions of my phone:

- texting/general communication

80

- navigation in new places

- starting time tracking timers and managing to-do items
- key card to dorms and other campus buildings

- mobile hotspot

- recreationally watching YouTube

- listening to YouTube in the background while sleeping

- listening to podcasts while going between places

- camera (particularly for Retro)

These are all various levels of difficulty to solve for me. | can watch
YouTube on my iPad. Texting/communication can all be done on my
Mac or iPad, since | am (far too deeply) embedded in the Apple ecosys-
tem. Navigation isn't an issue, since | am on a college campus and
generally know where things are without maps. Also, Wi-Fi blankets
campus so | do not need to worry about having a mobile hotspot.
Timers, todos, and the keycard are solved with my Apple Watch con-
nected to WiFi. Lastly, | will keep my phone in my dorm room hooked
up to a charger most of the time, but will be able to use it at night so |
can listen to video to help me fall asleep.

Most of these solutions are better than the alternative. Watching
items on a bigger screen and messaging on a device with a real key-
board both benefit from me taking the time to take out a device better
suited to the task.

This just leaves podcasts and a camera to be replaced. How hard
could that possibly be?

Going Through iPod Hell

I will not talk about everything relating to iPods and podcasts here
because the inane technical bullshit these devices put me through is
mostly a distraction and irrelevant to the focus of this article. However,
let it be known that | am not finished with these little electronic devils,
and you can expect a longer piece about the technical side of iPods

81

and other DAPs in the future. For this, all you need to know is | started

carrying two iPods:

- a 64 GB flash-modded iPod Mini running Rockbox with podcasts
managed by my custom podcatcher called OxiPodder?! that made it
super easy to sync podcasts whenever | plugged it in

- an 8 GB 4th generation iPod Nano loaded up with my YouTube Music
playlists.

N, ——
| T—

Figure 1: My Flash-Modded iPod Mini

'https://github.com/gyoder/oxipodder

82

https://github.com/gyoder/oxipodder

When they worked, | absolutely loved using my iPod for podcasts.
iPods are actually nice objects and feel great to hold. Using the click-
wheel to scroll through menus to select what | want to listen to and
skipping forward or backward 15 seconds or pausing by clicking a real
physical button is great and satisfying.

| would use it every day on my commute to work, when | would
workout, and other moments during the day that | would always listen
to a podcast. Having a separate device for podcasts removed the urge
for me to change what | was listening to and play something else, or
worse, start browsing YouTube. This gave me back the space that urge
was taking in my mind and it feels calmer and clearer, even in a small
way.

During this summer, | went on two road trips. The first one was with
friends driving to Salt Lake City and Moab. | actually didn't use my
player much on this trip and only listened to a single podcast. However,
that wasn't because | was using my phone. Other than occasional
navigation, | didn't use my phone at all. | think this was only possible
due to having that urge to grab my phone removed, so at no point
during the long ride did | even want to use it for entertainment.

My second road trip was to see family in Missouri. Due to unforeseen
accidents (dropping an iPod at a gas station and falling off a jet ski
with one | forgot to take out of my pocket), | had no iPod with podcasts
for the way back, so | grabbed my phone and used that, since | was
not about to go without anything for a 12-hour trip. What shocked me
was the ripple effect this had on returning to all my old bad habits. The
next morning, | found myself watching YouTube Shorts while eating
breakfast before going to work. Additionally, that urge to grab my
phone and change whatever | was listening to came back. Did they
come back because | used my phone like | did before, or because | was
a bit tired and it's easier to slip back into habits when you are mentally
exhausted? | suspect a mixture of both, but it was a good reminder of
what | was working to get rid of.

83

Figure 2: My iPod Mini needed a lot of repairs during its life

As much as | liked the iPods as a solution, they were not perfect. Nei-
ther the stock firmware or Rockbox are really designed for podcasts,
so there are a lot of paper cuts. Additionally, it was a massive time sink
for me to do this. | probably spent a minimum of 30 hours researching,
modding, fixing, and debugging iPods and writing my own program
to track and sync podcasts. Once | write a longer piece on that, | hope
it won't be as difficult for others to do the same, but it won't ever be a
fault-free solution. Also, it's expensive. | have probably spent upwards
of $150 on all my iPod and parts. Despite all of this, when it worked, it
really worked. | don't see myself without an iPod (or other Digital Audio
Player) for a long time.

84

Replacing My Camera

At the start of this summer, | was roped into using an app called Retro.
In a gist, Retro is a shared photo aloum only for friends. It does not feel
like social media at all and really helped me connect with friends while
| wasn't physically close to them. | never really got sucked in a death
spiral on Retro since you can get to the end of it after 5 minutes. It also
made me take at least one photo almost every day, which is great for
documenting my life to look back on later.

This made it incredibly important for me to have a camera that time-
stamps and geotags photos and was small enough for me to carry with
me. Turns out, not really a thing in the modern day. Because phones
have such good cameras, no one makes a modern point-and-shoot
digital camera for about $100-200, since you can't beat the quality at
that price point. There is a narrow range of cameras that have GPSin a
small point-and-shoot form factor, but the used camera market is very
expensive sadly. | found a few that looked good, but | already spent all
my money on iPods so | was unable to justify buying one.

On my first road trip with my friends, | dusted off our family's old
Nikon Coolpix point-and-shoot and took it with me. Notably, this was
too big and didn’t have GPS so didn't meet my requirements for a daily
carry, but it was still nice to take photos with. The resolution doesn't
look great, but | was able to get better photo composition using the
optical zoom of the camera. | enjoyed it much more than phone pho-
tography, so | will likely shell out for a used point-and-shoot at some
point in the near future.

85

86

Figure 3: Photo from Canyonlands National Park

Figure 4: Photo from Arches National Park

Figure 5: Photo of road from Canyonlands National Park

My current camera solution is another iPod. This time, it's an old 5th-
gen iPod Touch found when cleaning out old tech. This is a shockingly
good solution. Even though it is stuck on iOS 12, it is still able to
sync all of its photos to iCloud (Apple does a surprisingly great job of
supporting old hardware and software) and even includes GPS data.
Additionally, it being stuck on iOS 12 is actually an advantage since
there are almost no compatible apps (I have found zero) and the
browser is so out of date that it can't load most modern single-page
JavaScript apps. So far | have only gotten YouTube to work, but the
YouTube mobile site sucks so much to use that this isn't an issue. This
basically makes it a dedicated camera. The biggest downside is it's
battery is shot, and it has about the quality that you would expect from
a $200 device that was discontinued a decade ago. | will eventually get
a real camera, but for now, | am happy with this.

87

Figure 6: iPod Touch 5th Generation

Nothing Quite Beats Pen and Paper

Phones are so good at everything that it is easy to be caught off guard
if you don't have one on you. There are little things that you don't
normally think about, like paying a friend on Venmo or needing to scan
a QR code. While these do come up, they are mostly solved by another
item | started to carry on me: a notebook. Rarely is anything that you
need to do so urgent that it cannot wait until you finish the day and go
back home. Because of this, you can write it down in a notebook and
look at it later.

88

Additionally, | think that writing things out by hand, whether it be
notes, logs, or ideas, is really beneficial. Handwriting helps with mem-
ory, and being able to mix in sketches, arrows, and everything else
pen and paper allows for makes it easy to map out ideas in progress.
It also just feels so nice. There is one very notable personal downside;
My handwriting is historically bad and | often struggle to read what
I've written down. However, this is balanced out by the memory advan-
tages mentioned earlier. Ultimately, adding a notebook to my daily
carry has been super nice.

Reflection

In Fall of last year, my first semester at Purdue University started. That
person isn't me, or at least not who i am now. Ever since the first day
that i have stepped on campus, my life has changed drastically. i have
changed so much. i started working on super cool projects, i have met
some really amazing people, i actually came out after 5 years. The life
i have now is just significantly better than when i started and that
doesn’t seem to be changing any time soon.

Starting at the end of last semester, a new thought started echoing
around in my brain.

oh god, i graduate in 2 years. i am almost a third of the way
though my time here. i only get to do this again 2 more times.
everything went so fast. if it continues at this rate ... but i cant
leave. this place has made my life better. i cant leave the people
i met. i cant leave everything ive built here. i love it here. what
happens when i get out. i dont want my life stop getting better. it
cant be over so soon. it cant finish before im ready...

To this day, i still have this thought and it gets me really worked up and
anxious.

89

Everything you have read up until this reflection section was written
in August. It is now late September. | have written the conclusion many
times and every time | hated it. It always felt like it was disingenuous,
like | was trying to give you something that didn't exist.

A lot of the challenges that | faced when writing about this were the
external deadlines. Because of the nature of SIGHORSE, | was working
within a deadline so this project had to be over before it would naturally
finish. | wasn't even able to really go out without my phone. Normally,
something like this would be okay. If this was a story about technology,
I wouldn't have had this issue. But it isn't a story about technology. It's
a story that involves technology but is about me.

| tried to give some insight, some revelation, into my life and how |
changed during this adventure. | wrote a cute little conclusion about
how my life improved throughout this process and urged others to
think about their life. It was an ending, but it wasn't great. It wasn't
something that made a lot of sense in where | was in my life. My
relationships to everything | wrote about was still changing

Then, something magical happened. SIGHORSE had review cycles.
All of the sudden | was granted extra time and could write an ending
that | liked more. | talked to some friends about the ending and wrote
another one. This time | left the book open making sure to talk about
how | still have a lot to learn about where this fits in my life and keeping
it open for me to add to in the future. This just didn't feel satisfying. No
mater how much | pretend otherwise, SIGHORSE is coming to an end
and | need to acknowledge that.

During the darkest and brightest times in my life, i have always told
myself “this too shall pass.” i couldn’t tell you where i first heard it, but it
stuck with me.iwastalking to a friend about my struggles with writing
thisending.itold them about my insecurity about when college is over
and they talked about how change was scary.

90

it surprised me when they said that, because thats not what i said.
i said that i was scared that my life was going to stop getting better
when ileft. That i was going to lose everything i gained here. That i was
scared of ... oh.

that i was scared of how my life was going to change when i was
done.

Doing this adventure did make my life better and it would be silly for
me to believe that once i submit this draft for SIGHORSE, that i would
lose the personal progress i made. i will still have better habits and a
cool new interest. it's also silly for me to think that everything i wrote
about would stay static just because this project is over. i have another
70 years left in my life (optimistically anyway) so of course i will keep
changing and of course my life will keep getting better throughout
those years. just because one of the best chapters in my life will end,
doesn't mean i won't find another one that will make me even better.
it's a lot more satisfying to let something truly end and i need to be
okay with it.i have a long time until i graduate so ill make the most of it,
but when the end comes, ill be there in an open embrace to celebrate
it and everything that's next.

this too may still pass, but i shall be out there, searching for what is
after

91

92

93

Sarlacc: A Rust crate for lock-free interning of data
Henry Rovnyak

ABSTRACT. In this report, I describe everything that Ilearned in the process of creating the Sarlacc
crate in Rust, which is a lock-free implementation of interning. I describe the process and pitfalls of
programming using atomics, as well as of creating a lock-free concurrent data structure. I discuss
the fundamentals of atomic operations, memory ordering, and operating on pointers. Then I show
how they apply to the Ctrie data structure and its implementation in the Sarlacc crate.

Introduction

Concurrency, the idea of doing multiple things
at the same time, is an important feature of
modern computer systems. For example, we
can use it to speed up our programs by per-
forming different aspects of a computation
in parallel, or we can use it to improve the
throughput and latency of our web servers by
processing multiple requests concurrently.

Note that there are actually two kinds of
concurrency: First, modern CPU chips are
actually made up of multiple mini-comput-
ers wired together called cores, confusingly
also called CPUs. Your operating system can
put each of your concurrent operations, or
threads, on different cores, allowing them to
execute at literally the same time. This is
called parallelism, which is a special case of
concurrency.

However, if your operating system needs to
run more threads than your computer has
cores, it will be literally impossible to execute
all of them in parallel — your operating sys-
tem needs a mechanism to assign threads to
cores such that all tasks get finished. This is
done by instructing the cores to pause what
they’re doing and switch to a executing a
new thread every few milliseconds. This is
called context switching. It doesn’t improve
performance, but it allows all tasks to make
progress, as opposed to letting some stall due
to having to wait for other threads to finish.

94

From the perspective of a programmer how-
ever, we have no clue whether or not our
threads will be executed truly in parallel
or when or how often our threads will get
stopped and restarted. Therefore, we have
to engineer our code to function regardless
of how our threads interleave in time and
between CPU cores. This would be completely
unproblematic if our tasks didn’t depend on
each other at all, but in real systems, threads
will need some way to communicate and
share information, requiring some form of
synchronization. There are a lot of ways that
this can go wrong.

The following code, where two threads incre-
ment a counter in parallel, illustrates a race
condition — a situation where the output of a
program depends on the unspecified order of
execution of its concurrent threads of execu-
tion.

// Rust knows that what we're doing is
terrible; all of the unsafe is to stop the
compiler from trying to stop us

let mut number: ubd = 0;

let ptr = (&mut number) as *mut u64 as usize;

let handle = thread::spawn(move || {
for _ in 0..1000000 {

// Use volatile reads and writes to
prevent the compiler from collapsing them
into one operation

let mut num = unsafe
{ read volatile(ptr as *mut u64) };

num += 1;

unsafe {

write volatile(ptr as *mut u64,

num) ;

}
i

for _in 0..1000000 {

let mut num = unsafe { read volatile(ptr
as *mut u64) };

num += 1;

unsafe {

write volatile(ptr as *mut u64, num);

}

}

handle.join().unwrap();

// Almost guaranteed to NOT be 2000000
assert ne!(number, 2000000);

This is a simple example, I swear /! Most
of this is begging the compiler not to stop me
from writing this horrible code and begging
it to not optimize it to hide the issue. What is
going on is that we’re incrementing the same
memory location over and over again from
two different threads.

You can see that performing an addition
requires three stages. A memory read, an ad-
dition, and a memory write. I separated those
stages to prevent the compiler from collapsing
the loop, but even if I just used a simple num +=
1, the underlying implementation in the hard-
ware would still require performing those
three stages. The reason that the number
printed is almost certainly not 2000000 is that
it can happen that both the spawned thread
and main thread can read, say, the number
1234 at the same time, perform the addition,
and write 1235. Two additions should have
been performed, but it looks like only one has.

It may appear that operations that have only
one stage are safe, for example maybe a single
write volatile. However, who knows how
it’s implemented in the CPU? It could be
implemented in lots of different stages for all

we know. Second, from the perspective of the
CPU, it would be valid for the write to only
be applied to a CPU core’s local cache without
being flushed to main memory. Then other
threads wouldn’t be able to observe the write
which would cause all kinds of issues. I will
elaborate more on this issue in later sections.

The classical resolution to this problem is to
use a lock — a thing that will invoke CPU
synchronization primitives to force threads to
wait if they need to access data that is already
being accessed by another thread.

// “Arc’ allows us to share the ‘Mutex
between threads without using unsafe code.
let number = Arc::new(Mutex::new(0 u64));

let number for thread = Arc::clone(&number);

let handle = thread::spawn(move || {
for _in 0..1000000 {

// Locking the mutex prevents the
main thread from accessing the number until
the end of scope

let mut num =
number_for_thread.lock().unwrap();

*num += 1;

for _in 0..1000000 {
let mut num = number.lock().unwrap();
*num += 1;

}
handle.join().unwrap();

// Guaranteed to be '2000000"
assert_eq! (2000000, *number.lock().unwrap());

The problem with this is that we’ve immedi-
ately lost all benefits to using threads because
threads have to block each other to be able
to do work. When programming with locks,
you have to think very hard to minimize the
number of threads that need access to data
behind a lock at any given time. The more
subtle issue is that if the main thread gets
interrupted while holding the lock, the new

95

thread will stall until the main thread gets
rescheduled to release the lock.

Locks also have a lot of overhead because
they typically involve invoking the operating
system. This is necessary so that the CPU core
can be rescheduled to do something useful
while waiting, or simply get turned off to
conserve power.

The solution that I'm building up to and
the entire subject of this report is atomics
— the aforementioned hardware synchroniza-
tion primitive that allows us to build concur-
rent systems without blocking or invoking the
operating system, and while preserving the
benefits of parallelism.

Atomics effectively guarantee that an opera-
tion is performed in one stage; it’s impossible
for any CPU core to observe an intermediate
stage of an atomic operation. This also implies
that the atomic operation must immediately
be visible to other threads and that it can’t be
hidden in the local cache of a CPU core.

let number = Arc::new(AtomicU64::new(0));
let number for thread = Arc::clone(&number);

let handle = thread::spawn(move || {
for _in 0..1000000 {
// Atomically add one to the number.
// Ignore the "Ordering’ parameter, I
will talk about it later.
number_for_ thread.fetch add(1,
Ordering: :Relaxed);
}
IO H

for _in 0..1000000 {
number. fetch add(1, Ordering::Relaxed);
}
handle.join().unwrap();
// Atomically read the number

assert_eq! (2000000,
number.load(Ordering: :Relaxed));

96

Finally, I can explain what my Sarlacc crate
is supposed to be doing... Sarlacc uses atomic
operations to implement a technique known
as interning. Interning is when your program
stores a piece of data in a global hash table for-
ever such that all entries are deduplicated and
effectively leaked from memory [1]. This has
the benefit that a pointer to the data uniquely
identifies it, and you can efficiently perform
hashing and equality checks using the pointer
instead of the (potentially very large) piece
of data itself. The deduplication can also save
memory depending on access patterns.

The reason that atomics are interesting for
this usecase is that our hash table is global
and accessible among all threads. Therefore, it
needs to be synchronized somehow. Second,
when we intern an object, we usually expect
it to already be interned since we’re not plan-
ning on leaking all of our memory. Therefore,
the majority of operations will read-only. We
don’t need to enforce exclusive access to a
piece of data if it’s only ever being read, there-
fore using a lock to enforce exclusive access
is overkill.

There does exist a type of lock called a RwLock
that allows unlimited threads to access the
data if they promise to only read, however we
actually don’t know whether our access will
be read-only until we query the hash table and
find out whether our value is already present
in it. We could take a read lock and upgrade it
to a write lock if we determine that we need to
write, however hadn’ttheught-ef that-when
. | thi et

There is a ubiquitous crate for doing this
known as internment [2]. As of writing, it im-
plements the global hash table using a global
lock, meaning it has all of the issues associated
with locks that I describe above. This is the

motivation for re-implementing the function-
ality using atomics instead of locks.

In this report, I will explain to you, dear
reader, everything that I have learned about
atomics and how you can implement your
own lock-free data structures from scratch. I
will discuss the Ctrie data structure and its
implementation in the Sarlacc crate, and I will
discuss its performance.

Programming with Atomics

As our first lock-free data structure, we
will re-implement LazyLock using atomics.
LazylLock is a data structure intended for lazy
initialization of global data.

static LAZY: LazylLock<u64> = LazyLock::new(||
{

println! ("Initialized!");

123
i

println!("Starting!");

// Prints "Initialized!" because we are
accessing the data for the first time
println!("{}", &*LAZY);

// Does NOT print "Initialized!" because the
value that we initialized previously has been
saved

println! ("{}", &*LAZY);

LazyLock uses a lock internally to prevent
other threads from attempting to initialize the

data while another thread is currently initial-

izing it. Note that this is actually a very good
usecase for a lock; it would be inefficient and
potentially slower for all of the threads to try
to initialize the data at once and to race to be
the first. However this example demonstrates
a lot of principles, so we will do it anyways.

Lets begin with a naive implementation, and
call it LazyAtomic for funsies since it doesn’t
have locks.

pub struct LazyAtomic<T: Send + Sync> {
// “null’ will represent uninitialized.
// “AtomicPtr® is essentially the same
thing as an “AtomicUsize® but it's a pointer
data: AtomicPtr<T>,
// This is the function we will call to
initialize the data once we have to do that
initializer: fn() -> T,

}

impl<T: Send + Sync> LazyAtomic<T> {
/// Create a new ‘LazyAtomic' with the
given initializer
pub const fn new(initializer: fn() -> T)
-> LazyAtomic<T> {
LazyAtomic {
data:
AtomicPtr::new(ptr::null mut()),
initializer,

}
}
impl<T: Send + Sync> Deref for LazyAtomic<T>
{
type Target = T;

/// Either initialize or get the already
initialized value in the “LazyAtomic'.
fn deref(&self) -> &Self::Target {
let ptr =
self.data.load(Ordering: :Relaxed);

if Iptr.is null() {
return unsafe { &*ptr };

}

let initialized = (self.initializer)
();

let initialized ptr =
Box::into_raw(Box::new(initialized));

self.data.store(initialized ptr,
Ordering::Relaxed);

unsafe { &*initialized ptr }
}

impl<T: Send + Sync> Drop for LazyAtomic<T> {
/// Drop the LazyAtomic when it goes out
of scope. Rust doesn't drop raw pointers
automatically.
fn drop(&mut self) {

// We can access the pointer without
using atomics because we have a mutable
reference to it which guarantees that the
pointer is unaliased

let ptr = self.data.get mut();

97

if Iptr.is null() {
drop(unsafe
{ Box::from_raw(*ptr) })
}
}

First, you’ll probably notice that we have to
use a decent amount of unsafe. This is just the
reality of working with raw pointers in Rust.
Second, you’ll probably notice that there’s a
major problem with the atomic code in there!
Don’t read the next paragraph if you want to
try to figure it out yourself.

What if two threads want to reference the data
at the same time but it’s not yet initialized?
They will perform the load operation, and
they will both read a null pointer. They will
both call the initialization function and they
will both try to store a pointer to their data
into the AtomicPtr. The way that atomics
work guarantees that one will do it after the
other, but when the first one gets overwritten,
the data is essentially leaked and lost forever.

To solve this, we need to use the compare
exchange operation, also known as compare
and swap or CAS. It is a very powerful atomic
operation that has this functionality:

impl<T> AtomicPtr<T> {
// This, but it's all atomic
fn compare_exchange(&self, expected: *mut
T, new: *mut T) -> Result<*mut T, *mut T> {
if self == expected {
*self = new;
Ok (expected)
} else {
Err(self)
}

This basically allows us to say “If the current
value has not changed, then we can update it.
Otherwise we can’t” Lets see how we can use
this to fix our LazyAtomic implementation:

98

fn deref(&self) -> &Self::Target {
let ptr =
self.data.load(Ordering: :Relaxed);

if Iptr.is null() {
return unsafe { &*ptr };

}

let initialized = (self.initializer)();
let initialized ptr =
Box::into_raw(Box::new(initialized));

match self.data.compare exchange(
ptr::null_mut(),
initialized ptr,
Ordering: :Relaxed,
Ordering: :Relaxed,

) A
Ok() => {
// Our value was successfully
inserted
unsafe { &*initialized ptr }
}

Err(prev) => {

// Our value was NOT successfully
inserted; instead we found a different
pointer here which means that the value was
initialized after we loaded it.

drop(unsafe
{ Box::from_raw(initialized ptr) });

unsafe { &*prev }

}

This actually works! It’s a special case of a
wider pattern that allows you to use compare-
and-swap to make any operation atomic (with
a caveat that I will explain later):

Tloop {
let value = anything.load();

let new_value = any operation(value);

match anything.compare exchange(value,
new_value) {
Ok() => break, // Update successful
Err(_) => continue, // Whoops, it
changed in the meantime! Lets try again.
}
}

Such a “compare and swap loop” is the funda-
mental unit of operation for most lock-free
data structures. Now this may look to you a

whole lot like a lock — when an operation is
successful and overwrites the atomic pointer,
it causes all other threads that are trying to
update the value to fail. In effect, updates
still happen in sequence. One of the benefits
however is that reads are very lightweight: a
simple atomic load. Lock free data structures
shine in read-heavy workloads.

Another benefit is that if a thread working
on the value is interrupted, it cannot cause
the rest of the threads to block. Instead those
threads will just keep going and the thread
that got interrupted will probably have its
CAS operation fail. In fact, this is the property
that defines a lock free system. The term “lock
free” does not refer to never using a lock
explicitly — rather it refers to this property of
guaranteed system-wide progress [3].

There is also a term, wait free, for systems that
guarantee progress on every thread regardless
of what other threads are doing [3]. A CAS
loop is not wait free because progress on some
threads can cause progress on others to stall
potentially indefinitely. Read operations are
typically wait free because progress on other
threads cannot stall read operations.

There’s actually yet another bug in our
LazyAtomic implementation. I bet you won’t
get this one unless you know about...

Memory ordering

This section is essentially an amalgamation of
the following sources [4] [5] [6] [7], and ex-
plained in the way that I wish it was explained
to me. Memory ordering is a complicated
topic and most sources seem to only give
50% of the explanation, though thankfully dif-
ferent 50%s. Hopefully I can give you 100%,
though I encourage you to dive into those
sources to strengthen your understanding.

What if I told you that even if a pointer
was properly initialized, inserted into the
AtomicPtr, and another thread loaded that
pointer, that other thread might see uninitial-
ized data? This may seem to break causality —
how could that other thread possibly see the
initialization and atomic store out of order?

Well, there are two reasons. The simplest
one is instruction reordering by either the
compiler or the CPU. For example, doing fol-
lowing reordering would be 100% fair game
from the perspective of both the compiler and
the CPU, assuming that they knew that the
initializer was a pure function:

fn deref(&self) -> &Self::Target {
let ptr =
self.data.load(Ordering: :Relaxed);

if Iptr.is null() {
return unsafe { &*ptr };

}

let initialized_ptr =
Box::into_raw(Box::new_uninit());

let ptr = match
self.data.compare_exchange(
ptr::null_mut(),
initialized_ptr,
Ordering: :Relaxed,
Ordering: :Relaxed,
) £
Ok(_) => unsafe
{ &*initialized ptr },
Err(prev) => {
drop(unsafe
{ Box::from raw(initialized ptr) });
unsafe { &*prev }
e
I

*initialized ptr = (self.initializer)();

ptr
}

In fact, it would almost certainly be faster
since you skip initialization in the failure case.
This code is obviously incorrect, but the com-
piler doesn’t understand the context in which

99

it is operating. It is clear how this would pro-
duce the effect that I described earlier.

The other potential cause of this issue is your
CPU cache. I alluded to earlier how data being
hidden in a cache local to a CPU core can
prevent it from being seen by other threads. It
isin fact possible for this to happen here. If the
atomic access is observed but the initialized
data isn’t flushed into main memory or at least
a higher level of cache, it cannot be observed
by other threads.

Even if it is flushed out of the core-local cache,
the thread accessing the data may need to
flush its own cache to get the new data into it.

This is in fact what the Ordering parameters
to the atomic operations are meant to solve.
They explain to the compiler how the given
atomic operation relates to other memory ac-
cesses on the same thread.

I discussed practical considerations like re-
ordering and cache to help your intuition, but
there is in fact a memory model describing
exactly what guarantees the compiler must
provide and which ones it doesn’t have to.
Fun fact, Rust actually uses the same memory
model as C++.

The memory model defines five different
types of ordering:

pub enum Ordering {
Relaxed,
Release,
Acquire,
AcqRel,
SeqCst,

Relaxed ordering

This tells the compiler that your atomic oper-
ation has no relation whatsoever to other
memory accesses. The CPU and compiler

100

are free to reorder your code in any way
—as long as it would be unobservable in
a single-threaded context—and the CPU will
not attempt to synchronize any memory other
than that of the atomic itself.

Even though the ordering is relaxed, all
threads must observe the same modification
order for just that one atomic memory loca-
tion.

For example, if one thread is executing func-
tion a,

static X: AtomicU64 = AtomicU64::new(0);

fnoa() {
X.fetch add(5, Relaxed);
X.fetch add(10, Relaxed);
}

fn b() {
let a = X.load(Relaxed);
let b = X.load(Relaxed);
let ¢ = X.load(Relaxed);
println!("{a} {b} {c}");

}

it is possible for another thread running b to
observe 0 5 15, or it could observe 0 10 15
if the the instructions get reordered. However
if there’s a third thread, it must observe the
same sequence as all of the others. If the
second thread observes 0 10 15, it is 100%
impossible for the third to observe & 5 15.
This is actually part of the memory model and
you can rely on it. This is called the variable’s
total modification order.

Relaxed ordering is naturally the fastest one.
A global counter is an example of where Re-
laxed ordering is appropriate.

static ID COUNTER: AtomicU64 =
AtomicU64: :new(0);

struct Thingy {
id: u64,
}

impl Thingy {
fn new() -> Thingy {

// Relaxed ordering is appropriate
because we only care about getting a new
number each time. This is guaranteed by the
total modification order, so this is fine.

let id = ID COUNTER.fetch add(1,
Ordering::Relaxed);

Thingy { id }

Ok so, how can we fix our LazyAtomic imple-
mentation?

Acquire and Release ordering

Acquire and Release ordering are how you en-
sure visibility of updates to other threads with
respect to atomic operations. Release ordering
can be thought of as yeeting all previous up-
dates into the void, and Acquire ordering can
be thought of as grabbing them from the void.
One could even say that you're releasing the
updates for them to then get acquired...

Release ordering only applies to store opera-
tions and Acquire only applies to load oper-
ations. Intuitively, it is clear why: Release
ordering is like an extra powerful store that
stores side effects along with the atomic oper-
ation, and Acquire ordering is like an extra
powerful read that reads side effects along
with the atomic read.

This is in fact the tool that we need to fix our
LazyAtomic implementation:

fn deref(&self) -> &Self::Target {

// Acquire ordering because we need to
grab the initialized memory

let ptr =
self.data.load(Ordering: :Acquire);

if Iptr.is null() {
return unsafe { &*ptr };

}

let initialized = (self.initializer)();

let initialized ptr =
Box::into_raw(Box::new(initialized));

match self.data.compare exchange(
ptr::null_mut(),

initialized ptr,

// Release ordering in the success
case because we need to yeet the initialized
memory so that the next load can grab it

Ordering: :Release,

// Acquire ordering in the failure
case because we need to grab the memory that
was initialized in the meantime so that we
can return it

Ordering::Acquire,

) {
Ok(_) => unsafe { &*initialized ptr }
Err(prev) => {
drop(unsafe
{ Box::from_raw(initialized ptr) });
unsafe { &*prev }

}

No more tricks, this really is a correct imple-
mentation!

Declaring an atomic operation with Release or

Acquire ordering is essentially declaring four

things at once:

« The atomic operation

« A compiler fence to disallow the compiler
from reordering instructions

« A CPU fence to disallow your CPU from
reordering instructions

« A memory fence to ensure that the memory
is synchronized

In terms of instruction reordering, Release
has the effect of preventing instructions that
are before the atomic operation from being
reordered to come after by either the compiler
or CPU. However, it allows instructions that
come after to be reordered before. Acquire is
the same but in reverse — it prevents instruc-
tions that come after from being reordered to
come before the atomic operation but it allows
instructions that already come before to be
reordered after.

101

In terms of cache control, Release ordering
has the effect of flushing changes that happen
before the atomic operation out of its cache,
and Acquire ordering has the effect of grab-
bing those new changes into its cache.

The Acquire ordering only grabs changes as-
sociated with the Release store that the load
observed. For example, if thread A writes a 1
to an atomic variable using Release ordering,
thread B writes a 2 with Release ordering,
and thread C reads with Acquire ordering,
then if thread C reads 1 it grabs changes from
thread A and if thread C reads 2, it grabs
changes from thread B. If T had said that
threads A and B both write 2, there would
be no way for thread C to tell which thread
it grabbed changes from — it grabs changes
from whichever thread wrote the 2 that it
saw. It’s the causality that’s important, not the
actual value.

The C++ memory model defines this in terms
of happens-before relationships. If thread A
writes something with Release ordering and
thread B reads it with Acquire ordering,
everything that happened before the the write
in thread A can be treated as if it happened
before the read in thread B. We can also say
that the read in B synchronizes with the write
in A. This is actually the only guarantee pro-
vided by the compiler about what Release and
Acquire ordering actually do. Another exam-
ple that will make this clear is making our
own lock from scratch:

struct Lock {
taken: AtomicBool,

}

impl Lock {
fn lock(&self) {
// Loop forever until the lock is
unlocked
while self.taken.compare exchange(

102

false,

true,

// In the success case, we use
Acquire ordering because we need all changes
made by the previous holder of the lock to
happen-before we take the lock

Ordering::Acquire,

// In the failure case, we don't
care about any other operations and just try
again

Ordering: :Relaxed,

).is err() {}
}

fn unlock(&self) {

// When we unlock the lock, we need
to use Release ordering so that the next
thread that takes the lock can synchronize
with us.

self.taken.store(false,
Ordering::Release);

}
}

In fact, you should forget everything just
I told you about reordering and cache and
whatnot because the memory model is what
matters to the theoretical correctness of your
code. Thinking about reordering and cache
is helpful for intuition and justifies the idea,
which is why I explained it, but ultimately
you shouldn’t think about memory ordering
in that way.

Anyways, this is the reason why you don’t
have to think about this stuff when working
with mutexes — the underlying implementa-
tion handles the memory ordering for you
and ensures that you’re allowed to think of
threads as accessing the lock in a well defined
sequence.

Some more things about happens-before re-
lations are that they are automatically estab-
lished whenever you spawn or join a thread,
and happens-before relations are transitive: if
a thread establishes a happens-before relation
with another thread, it inherits any existing
relations from that thread.

static X: AtomicU64 = AtomicU64::new(0);
static Y: AtomicU64 = AtomicU64::new(0);

fn thread_a() {
X.store(1l, Ordering::Release);

}

fn thread_b() {

// If this loads ‘1%, then a happens-
before relation is established with
“thread_a®

X.load(Ordering: :Acquire);

Y.store(2, Ordering::Release);

}

fn thread c() {

// If this loads "2, then a happens-
before relation is established with
“thread b".

// If “thread b" also loaded '1°, then a
happens-before relation is established with
“thread a' by transitivity

Y.load(Ordering: :Acquire);

Now here’s another example where it gets
really wacky: atomic reference counting.

struct Arc<T: Send + Sync> {

// The atomic value stores the reference
count

thingy: *const (AtomicU64, T),
}

unsafe impl<T: Send + Sync> Send for Arc<T>
{}
unsafe impl<T: Send + Sync> Sync for Arc<T>

{}

impl<T: Send + Sync> Arc<T> {
fn new(v: T) -> Arc<T> {
Arc {
thingy:
Box::into_raw(Box::new((AtomicU64::new(1),
v))),
}
}
}

impl<T: Send + Sync> Deref for Arc<T> {
type Target = T;

fn deref(&self) -> &Self::Target {
&unsafe { &*self.thingy }.1
}

impl<T: Send + Sync> Clone for Arc<T> {
fn clone(&self) -> Self {
// Increase the reference count
// Cloning doesn't need to
synchronize with any other operations
unsafe
{ &*self.thingy }.0.fetch add(1
Ordering::Relaxed);

Self {
thingy: self.thingy,
}

}

impl<T: Send + Sync> Drop for Arc<T> {
fn drop(&mut self) {

// fetch sub returns the previous
value. If the previous reference count is
*1', then the new reference count is '0' and
we need to drop.

// Subtracting doesn't need to
synchronize with other operations; the
mechanism by which we received the Arc should
have established a happens-before relation
with its initialization (otherwise this data
might be uninitialized) which means dropping
is safe. (...right?)

if unsafe
{ &*self.thingy }.0.fetch sub(1
Ordering::Relaxed) '= 1 {

return;

}

drop(unsafe
{ Box::from_raw(self.thingy.cast mut()) })
}
}

This implementation probably looks correct
to you. In fact, it looks a whole lot like that
global counter example that I gave as a valid
usecase for Relaxed ordering. However it has
an issue. If you want a hint, it has to do with
interior mutability.

The issue is that the following code is un-
sound:

let v: Arc<Mutex<String>> =
Arc::new(Mutex::new("XYZ".to string()));

let v_for_thread = Arc::clone(&v);

thread: :spawn(move || {
let mut str =

103

v_for_thread.lock().unwrap();
*str = "ABC".to_string();
// Drop ‘str’
// Drop “v_for_thread’
i

drop(v);

Consider the sequence of events where the
thread runs as soon as its spawned, acquiring
the lock, replacing and dropping the inner
string, and dropping the Arc, and then the
thread is interrupted before joining. Then, the
main thread drops the Arc, decrementing its
reference count to zero. It’s possible that the
main thread doesn’t observe the change that
took place in the Mutex because there is no
Acquire operation to synchronize with with
the Release operation of the lock. Then, the
main thread would try to free the “XYZ” string
a second time which would be Undefined Be-
havior.

So how can we fix this? It looks like we need
an Acquire operation on the lock, but the Arc
implementation is generic and doesn’t know
what’s inside it, so we can’t do that... We need
to synchronize with something, but what?

What standard library implementation does is
similar to this [8]:

fn drop(&mut self) {

// fetch_sub returns the previous value.
If the previous reference count is "1°, then
the new reference count is "0 and we need to
drop.

// Release ordering so that we can
synchronize with this subtraction when the
reference count hits zero

if unsafe
{ &*self.thingy }.0.fetch sub(1,
Ordering::Release) != 1 {

return;

}

// Establish a happens-before relation
with every ‘drop’ call so that we know that
all interior-mutability writes are visible to
the drop call.

104

let _ = unsafe

{ &*self.thingy }.0.load(Ordering::Acquire);

drop(unsafe
{ Box::from_raw(self.thingy.cast mut()) })
}

Something funky is going on. The Acquire
load is synchronizing with every Release
store? Yeah! The C++ memory model speci-
fies this thing called a Release sequence. Since
read-modify-write operations (like atomic
add or CAS) modify the atomic variable based
on its previous value, it doesn’t break the
chain of causality like a full overwrite would.
Philosophically, since we updated the variable
based on its previous value, then there is
still a causal connection to that previous
value. Therefore, the compiler allows you to
synchronize with Release operations even if
read-modify-write operations come after it in
the variable’s total order, regardless of that
operation’s memory ordering. If you use Re-
lease ordering with those read-modify-write
operations as well, it will synchronize with
them too. Note that this is a separate concept
from transitivity of happens-before relations.

If we let black lines denote Relaxed opera-
tions, red lines denote Release operations,
blue lines denote Acquire read operations,
solid lines denote write operations, and
dashed lines denote read-modify-write oper-
ations, then the arrows denote what has a
happens-before relation with what.

Since every operation on the Arc counter is
a read-modify-write, that Acquire operation
will see through all of them to synchronize
with every Release write in drop, ensuring
that all interior mutability shenanigans hap-
pen-before the interior data is dropped. This
fixes the soundness hole that we had earlier.

AcqRel ordering

I mentioned read-modify-write operations,
which combine a read and a write into one
operation. If you use Acquire ordering then
the write will be Relaxed and if you use Re-
lease then the read will be Relaxed. What if
you want the read to be Acquire and the write
to be Release? Well, you can use AcqRel!

To solve our issue with Arc, it would have
worked just as well to use AcqRel on the
fetch_sub instead of having a separate read
that we ignore. However, that would be bad
for performance because we only need Ac-
quire ordering in the situation where we’re
about to drop the inner data. Another situa-
tion where AcqRel would be necessary is
something like...

let new = Box::into_raw(Box::new(/*
initialize */));

let prev_ptr = atomic ptr.swap(new,
Ordering: :AcqRel);

let prev = unsafe
{ Box::from_raw(prev_ptr) };

Here, we need Release ordering on the write
because the initialization of new needs to
be made visible, and we need Acquire order-
ing on the read because the initialization of
prev_ptr needs to be visible.

Well, that was a whole lot of yapping about
Acquire and Release! That’s because they’re
basically the most important memory order-
ings that you’ll be using 99% of the time along
with Relaxed. However, every so often you’ll
need to do something insanely cursed and
Acquire and Release won’t suffice.

SeqCst

Pronounced “Sequentially Consistent”, Se-
qCst is the nuclear option of memory order-
ings as well as the least performant. It applies
Release ordering on writes, Acquire on reads,
and AcqRel on read-modify-writes. Therefore,
it can form happens-before relations with
other things. But it is stronger than even that.
A SeqCst operation takes place in a global
modification order with respect to all other
SeqCst operations.

This means that you can think of all SeqCst
operations as happening one after the other.
This is analogous to the total modification
order of an individual atomic variable, but it
applies globally instead of just to that one
atomic variable. For example...

static X: AtomicBool =
AtomicBool::new(false);
static Y: AtomicBool =
AtomicBool: :new(false);

fn thread a() {
X.store(true, Ordering::SeqCst);
}

fn thread b() {

105

Y.store(true, Ordering::SeqCst);

}

fn thread c and d() {
let x = X.load(Ordering::SeqCst);
let y = Y.load(Ordering::SeqCst);
printin! ("{x} {y}");

}

It is possible for thread C to observe either X
or Y being set to true first, since either thread
could win the race. However, because of se-
quential consistency, a thread D must observe
the same sequence as thread C. If thread C
observes Y set to true and X set to false, then
thread D cannot possibly observe X as true
and Y as false. That would be totally possible
if we were using any other ordering instead.

Note that the load operations also have to
be either SeqCst or Acquire, otherwise they
wouldn’t have any ordering relation and
could potentially be reordered. Even if there
was a happens-before relation established be-
tween threads A and B, that doesn’t carry over
to other threads that do not have a happens-
before relation.

SeqCst is the easiest to reason about because
you can basically entirely forget about the
weird memory ordering artifacts that I've
been describing. However, given that you're
trying to write performant code, it’s better to
reason through the logic instead of just using
SeqCst everywhere.

Fences
Read the “Fences” section of [4].

I'think that that source explains it well enough
that I can’t think of anything to add.

Consume

This is an ordering that only exists in C++
and they’re trying to deprecate it. However
you will see it if you read the C++ atomics

106

memory model that Rust follows. Consume is
essentially a weaker version of Acquire that
only applies to operations that depend on the
value loaded by the Consume load.

For example, it would be possible to use this
in our LazyAtomic type because the Acquire
ordering is to ensure that the data we get
through the pointer is visible. We do not
care about synchronizing with unrelated op-
erations. We would not be able to use it for a
lock because we do need to synchronize un-
related operations: the operations performed
while the lock is held do not depend on the
value returned by the load operation but we
still need to synchronize them.

There are technical reasons that I don’t under-
stand that allow this to make the generated
machine code much more efficient, however
there are other technical reasons that I don’t
understand that make it extremely difficult
to implement correctly in compilers. No C++
compiler actually implements Consume or-
dering and they just upgrade it to Acquire.

CPU dependence

Another beautiful footgun with memory or-
dering is that the guarantees you get depend
on the CPU that you’re using. On x86 CPUs,
you always get Acquire and Release ordering
on all reads and writes, even if you use
Relaxed ordering for them (though reordering
by the compiler would still be allowed). This
means that memory ordering bugs can be
hidden from you until you use a CPU like
ARM that doesn’t provide those guarantees,
so make sure you test your code using an
ARM CPU or similar.

The ABA problem

Now that we know about memory ordering,
we can start putting together correct lock-free
data structures... right?

When operating on atomic data structures, we
often need to apply CAS loops to pointers. For
example...

struct AtomicString {
string: AtomicPtr<String>,

}

impl AtomicString {
fn push(&self, c: char) {
loop {
// Load the inner string
let ptr =
self.string.load(Ordering: :Acquire);

// Copy the string, push the
character, and make it into a raw pointer

let str = unsafe { &*ptr };

let mut new str = str.to owned();

new_str.push(c);

let new ptr =
Box::into_raw(Box::new(new_str));

match
self.string.compare exchange(
ptr,
new ptr,
Ordering::Release,
Ordering::Relaxed,
) |
Ok() == {

// We successfully
inserted the lowercase string! We can drop
the old one now.

drop(unsafe
{ Box::from_raw(ptr) });

return;

I8
Err() => {

// Someone changed the
atomic string in the meantime! Whoopsie
doodles!

// Revive and deallocate
the string that we just made

drop(unsafe
{ Box::from_raw(new ptr) });

}
}

Can you see what the bug is? I promise that
it’s not nearly as esoteric as memory ordering
was.

Imagine if two threads were calling push at
the same time. Say that thread A reaches
loading the pointer and is interrupted. Then
say that thread B finishes the whole operation
in the meantime and replaces and deallocates
the old pointer. Now say that thread A is
rescheduled. Suddenly, it is operating with an
invalid pointer!

There is an even more subtle issue that
is possible... Say that we have two threads
running push and thread A is able to success-
fully clone to the inner string and is then
interrupted. Then thread B finishes the push
operation. If thread A were to be rescheduled,
it would fail the compare_exchange and noth-
ing would go wrong, however that’s no fun.
Imagine thread B runs push once again, and
when cloning, it reuses the original memory
address that it just deallocated. Then it does
a successful compare_exchange and replaces
the memory address with the reused old
one. Now when thread A reschedules and
performs the compare_exchange, it succeeds
because it sees the same memory address that
it saved, but that’s only because it was reused
and the compare_exchange operation should
actually fail.

This is called the ABA problem because while
thread A is interrupted, the value A is being
replaced with B and then replaced with A
again, causing the compare_exchange to erro-
neously succeed. So what do we do about this?

Overview of the Seize crate

We need some mechanism to tell other
threads to pretty please not deallocate our
pointers until we’re done using them. If we

107

were using any language other than C++ or
Rust, this would be solved for us by the
garbage collector, but we don’t have that lux-
ury.

However there is one advantage to Rust, and
that is that we can pull in random dependen-
cies without having to think about it too
much. So lets run in the terminal...

cargo add seize

seize [9] is a crate implementing an algo-
rithm that allows us to prevent the ABA
problem. It was originally developed for use
in the papaya crate which is a well known
implementation of an atomic hash table. Lets
see how we can use it to fix our AtomicString
implementation...

The first important concept in seize is that
of a Collector: a structure that stores objects
that we would like to free until they are no
longer in use by any thread. Every instance
of an atomic data structure should have its
own Collector, so lets put it as a field of the
AtomicString structure.

struct AtomicString {
string: AtomicPtr<String>,
collector: Collector

The second important concept is that of a
Guard, which allows us to protect atomic loads
of pointers and to guarantee that the pointer
will remain valid until the Guard is dropped.

fn push(&self, c: char) {
loop {
let guard = self.collector.enter();

// Load the inner string while
protecting the pointer from being freed

let ptr = guard.protect(&self.string,
Ordering::Acquire);

108

/7 ...

// Make sure the guard gets dropped
only after everything is done

// (I don't want to think about drop
semantics)

drop(guard);

The third important concept is retiring, which
is seize’s term for “free this pointer as soon
as nothing else is using it”.

fn push(&self, c: char) {
Tloop {
let guard = self.collector.enter();

let ptr = guard.protect(&self.string,
Ordering::Acquire);

let str = unsafe { &*ptr };

let mut new str = str.to owned();

new str.push(c);

let new ptr =
Box::into_raw(Box::new(new_str));

match self.string.compare exchange(
ptr,
new ptr,
Ordering: :Release,
Ordering: :Relaxed,
) o
ok() => {

// We successfully inserted
the lowercase string! We can retire the old
one now.

// The closure will be called
with the pointer as soon as no other thread
is using it.

unsafe {
self.collector.retire(ptr, |ptr, _collector

{

drop(Box::from_raw(ptr));
1)
}
return;
1
Err() => {
drop(unsafe
{ Box::from_raw(new_ptr) });
}
}

This is a correct implementation! seize is
actually doing an amazing amount of work
for us. As a simplification of what’s going
on under the hood, seize is keeping track of
all threads that have a Guard active. When a
piece of data is retired, it will wrap the pointer
in an Arc and for each active thread, insert
a clone of the Arc into an atomic list owned
by the thread. When a guard is dropped, the
thread will mark itself as inactive and iterate
through the list dropping the Arcs inside
it. Therefore, the pointer will only get fully
dropped once every thread that could have
possibly accessed it is no longer doing so. For
technical details, look at the Hyaline-1 section
of the Hyaline paper [10].

Implementation of Sarlacc

The Ctrie Data Structure

Now that we understand how atomics work,
I can explain how to use them to create a real
lock-free data structure. This data structure
will be a Ctrie, which is a type of lock-free
hash table [11]. A Ctrie is a tree structure with
three types of nodes, that I will call a Fork,
INode (indirection node), and Leaf, defined
roughly as following:

struct Ctrie {
collector: Collector
tree: INode,

}

struct INode {
ptr: AtomicPtr<Fork>
}

struct Fork {
is filled: BitVec<256>,
items: Box<[Branch]>,

}

enum Branch {
INode(*const INode),
Leaf (Entry),

Note that my real implementation actually
uses “tricks” (sketchy unsafe code) to remove
the Box around the [Branch] to remove a
layer of pointer indirection, however that
makes things unnecessarily confusing.

The array inside Fork is a sparse array of size
256. If there is no item present at a particular
index in the list, then that index is set to false
inthe is filled bit vector and excluded from
the array stored in items. If there were only
two items present in the array, then items
would have length two and is_filled would
have two elements set to true at the indices
that the two items are present.

{is_filled : 0b00100010, items : [, &]}

[w7 ®7 hagl 70705 07 é%?®]

So how can we use this tree as a hash table?
Well, what we can do is for an item that we
want to insert, we calculate its 64 bit hash,
and then split that hash into bytes. To insert
it into the tree, we use each byte of the hash
as an index into the respective Fork. The first
byte of the hash is used to index into the first
level of the tree. Then the second byte for the
second level, and the third byte for the third
level, and so on.

In most cases, it’s not actually necessary to
extend out the tree to a full depth of 8 for
each item we insert because if a Fork only has
one item, then that Fork can be removed from
its parent and the item stored in the spot left
behind. If we want to store an item where the
hash collides with that of an already stored
item, we have to store a Fork in that item’s
place and insert both of those items into the
new child node. That way, the depth of the
tree grows logarithmically with respect to the
number of items inserted.

109

For example, inserting the following items
hash(#) = [1,2,3,4]
hash(&4) = [3,4,3,2)
hash(%#) = [3,2,5,1]

would result in the following tree structure,

notating Forks with

Insert Insert é’%

Q . .

Insert &% Insert we

To enable atomic operations, the Ctrie adds
a layer of indirection between Forks, namely
the INode which stores an atomic pointer to
the Fork that is the child of it. This gives
the tree shown above the following structure,

notating INodes with [&J:

110

To mutate a Fork, we have to create a clone
of it, apply the changes, and then compare-
exchange the new Fork into the INode’s
AtomicPtr. We need to use Release ordering
for the CAS to ensure that the pointer’s initial-
ization is made visible. Reading from the tree
requires Acquire ordering to synchronize-
with the Fork’s initialization. The process of
inserting an element is as follows:

hash(=) = [4,1,3, 6]

1. Find the Fork that the element belongs to
and create a local copy of it

2. Mutate the local copy to include the new
element

3. Compare-exchange the new element in the
old one’s place. In case of failure, return to
step 1

4. Retire the old element

1: Clone

The reason that Branch needs to store a
pointer to an INode instead of just storing
it directly is that Forks need to be able to
be freely cloned while preserving the tree
structure, and if the atomic variable itself was
cloned, then any updates lower down in the
tree would update the original atomic variable
which would prevent the changes from being
visible in the clone being updated, which
would break the data structure when a clone
is successfully inserted.

The Sarlacc Crate

Now, given a lock-free hash table, we can
implement interning by creating a global in-
stance of the table and inserting whatever we
want to intern into it. If what we want to
insert is already in the Ctrie, we can return
a pointer to the value that is already there.
Since all interned data is read-only, we don’t
have to do any extra synchronization to that
pointer. If it’s not in the Ctrie, we can insert
it and return a pointer to the inserted value.
This properly de-duplicates all of the values
as expected, implementing interning.

So if you wanted to use my Sarlacc crate, how
would you be able to? First, you can install it
by running in your terminal

cargo add sarlacc

Second, you can choose whether objects
should be interned for the duration of the
process or if they should be stored in an arena
that you manage. If you choose to intern the
objects forever, then you can use the Intern
structure, which contains six methods:

o Intern::new

Intern a value in the global arena

let interned: Intern<String> =
Intern::new("ABC".to owned());
assert eq!(&*interned, "ABC");

o Intern::from_ref

Intern a value using a clone-able reference. If
the value is already interned then it returns
that interned value, otherwise it clones the
reference, inserts it into the data structure,
and returns the interned value.

It can actually be possible for the value to
be cloned even if it is already present in the
arena — If two threads are calling from_ref

111

at the same time with the same argument, it
is possible that both of them would see an
empty slot where the value to insert would be
present, and they will both clone the value to
be able to insert it. However, only one of the
threads will succeed the compare-exchange.
The thread that doesn’t will retry the opera-
tion and return the value that the other thread
inserted into the Ctrie.

let interned: Intern<str> =
Intern::from_ref("ABC");
assert_eq!(&*interned, "ABC");

« Intern::from owned

Equivalent to Intern::new, but returns a
value’s reference type instead of the same type
that you passed in.

let interned: Intern<str> =
Intern::from owned("ABC".to owned());
assert_eq!(&*interned, "ABC");

« Intern::get

Attempt to get a value that is already present
in the Ctrie. If it is not present, then return
None.

// "ABC" is not present in the global Ctrie
yet

assert!

(Intern::get(&"ABC".to owned()).is none());

// Insert "ABC" into the global Ctrie
Intern::from_ref("ABC");

// Now, we're able to retrieve it
let interned: Intern<String> =

Intern::get(&"ABC".to owned()).unwrap();
assert_eq!(&*interned, "ABC");

« Intern::get ref

Get a value by its reference type if it is already
present in the Ctrie. Otherwise, return None.

assert!(Intern::get_ref("ABC").is none());

112

Intern::new("ABC".to owned());

let interned: Intern<str> =
Intern::get_ref("ABC").unwrap();
assert eq!(&*interned, "ABC");

o Intern::into_ref

Get a static reference to the data stored inside
the Intern. This is needed because the refer-
ence returned by the Deref implementation is
tied to the lifetime of the Intern itself, rather
than being static like it should.

let interned: &'static str =
Intern::new("ABC".to owned()).into ref();
assert _eq!(interned, "ABC");

There also exists a function in the global
scope, num_objects_interned, which tra-
verses the Ctrie, counting the number of
objects interned in it. This can be useful for

debugging purposes.

If you want to use an arena instead of leaking
memory forever, then the Arena type contains
analogous methods to the ones described
above. The Arena type is what implements
the Ctrie data structure, and global Interns
are actually implemented as a thin wrapper
around a global Arena. Objects interned inside
of an Arena are leaked until the Arena is
dropped, at which point, everything stored
inside is dropped.

The type representing a value stored in an
Arena is ArenaIntern, which has a lifetime
parameter tied to that of the Arena. If types
from two different Arenas are hashed or
compared for equality, then they will return
different hashes and compare as false even
if the underlying values are the same. The
reason is that they will have different pointers
because they are stored in different arenas.

This table shows the Arena functions that are
analagous to Intern functions.

Arena Global

Arena::intern Intern::new
Arena::intern_ref Intern::from_ref
Arena::intern_owned Intern::from_owned
Arena::get Intern::get
Arena::get_ref Intern::get_ref
Arenalntern::into_ref | Intern::into_ref
Arena:: num_objects_interned
num_objects_interned

Note that the method of
Arenalntern returns a value with the same
lifetime as the Arena, rather than a 'static

into_ref

lifetime.

In addition, there is also

« Arena::new

Create a new, empty Arena.

This uses Rust’s default RandomState hasher.
The global Arena backing Intern also uses
this default hasher.

« Arena::with hasher

Create a new, empty Arena with a custom
hasher.

Performance

Now that you have an understanding of atom-
ics, the Ctrie data structure, and the design of
the Sarlacc crate, I would like you to make a
prediction. The Internment crate is roughly a
standard library HashSet behind a Mutex. Do
you think that Interment or Sarlacc is faster?
What about in the single-threaded vs multi-
threaded case?

Here are the results for a microbenchmark
for inserting 100, 000 items into an Arena for
both Sarlacc and Internment, however 90%
of those insertions are duplicates. Therefore,
90% of accesses will only require read access,
which is the bread-and-butter of atomic data
structures.

Sarlacc vs Internment Comparison
T T T T

16
14
12
10
8
6
4
2
0

Sarlacc Internment Sarlacc Internment

1 thread 1thread 50 threads 50 threads

You can see that Sarlacc is slower in the
single-threaded case, but faster in the multi-
threaded case. It is generally more robust
to concurrency than Internment is, due to
its lock-free nature. However, we are giving
it a huge advantage by making 90% of the
accesses read-only. Lets see what happens if
we don’t do that. In this table, none of the
insertions will be duplicated.

113

Sarlacc vs Internment —
No Duplication
T

Internment
50 threads

Sarlacc
50 threads

Internment
1 thread

Sarlacc

1 thread
Here, we can see that Sarlacc cannot compete
against Internment. But what’s going on? My
friends will know that I have been struggling
to get flamegraphs working to provide clar-
ity on this issue. I've found that generating
flamegraphs from this benchmark sometimes
produces nonsensical results, crashes the pro-
filer, or suggests that Internment and Sarlacc
are actually the exact same speed. My best
guess is that the bottleneck is memory alloca-
tion. When the flamegraphs do work, I have
observed the memory allocator spamming the
mmap syscall, which is what I suspect is break-
ing the profiler. To confirm that the memory
allocator is the issue, here is the same bench-
mark, but using Jemallocator as the global
allocator instead of Rust’s default:

114

Sarlacc vs Internment — No Duplication —

Jemallocator
T T T T

Internment
50 threads

Sarlacc
50 threads

Internment
1 thread

Sarlace

1 thread
You can see that Sarlacc got dramatically
faster with a different allocator, suggesting
that allocation is the bottleneck. I have a
handful of ideas to improve the performance
of Sarlacc further, but where it stands now,
Sarlacc is probably not actually worth using
over Internment.

Realistically, Internment benefits from being
able to mutate its own structure freely with-
out having to be extremely careful not to step
on other thread’s toes. Evidently, it benefits
more than the cost of a global lock.

However, these benchmarks do still demon-
strate the way in which lock-free data struc-
tures excel in high concurrency, read-domi-
nated workloads.

Conclusion

It’s probably anticlimactic that Sarlacc isn’t a
clear improvement over Internment, however
not is all lost! I managed to trick you into
learning about atomics and lock-free data
structures, through the false promise of im-

proving an important Rust library &. Now,

you have the knowledge and skills to recog-
nize when atomics are the correct option and

to be able to build your own lock-free data
structures from scratch.

My journey with Sarlacc is far from over.
There is still a ton of room for improvement
as well as missing features to implement, and
what I have implemented now is dramatically
better than my initial implementation. For
all you or I know, I'll make a breakthrough
realization tomorrow that makes Sarlacc blow
Internment out of the park. Probably not
though. _(\V)_/~

References

[1] “String interning” [Online]. Available:
https://en.wikipedia.org/wiki/String_
interning

[2] David Roundy, “Crate intern-
ment.” [Online]. Available: https://docs.
rs/internment/latest/internment/index.

html
[3] “Non-blocking algorithm.” [On-
line]. Available: https://en.wikipedia.

org/wiki/Non-blocking_algorithm#

[4] Mara Bos, “Memory Ordering” [On-
Available:
atomics/memory-ordering.html

line]. https://marabos.nl/

[5] Dave Kilian, “Making Sense of Acquire-
Release Semantics” [Online]. Available:
https://davekilian.com/acquire-release.
html

[6] “Atomics” [Online]. Available: https://
doc.rust-lang.org/nomicon/atomics.
html

[7] “std:memory_order” [Online]. Avail-
able: https://en.cppreference.com/w/
cpp/atomic/memory_order.html

[8] “Use a load rather than a fence
when dropping the contents of an

(9]

(10]

(11]

Arc.” [Online]. Available: https://github.
com/rust-lang/rust/pull/41714

Ibraheem Ahmed, “Crate seize” [On-
line]. Available: https://docs.rs/seize/
latest/seize/

Ruslan Nikolaev and Binoy Ravindran,
“Snapshot-Free, Transparent, and Ro-
bust Memory Reclamation for Lock-
Free Data Structures,” 2021, ACM. [On-
line]. Available: https://arxiv.org/pdf/
1905.07903.pdf

“Ctrie” [Online]. Available: https://en.
wikipedia.org/wiki/Ctrie#

115

https://en.wikipedia.org/wiki/String_interning
https://en.wikipedia.org/wiki/String_interning
https://docs.rs/internment/latest/internment/index.html
https://docs.rs/internment/latest/internment/index.html
https://docs.rs/internment/latest/internment/index.html
https://en.wikipedia.org/wiki/Non-blocking_algorithm#
https://en.wikipedia.org/wiki/Non-blocking_algorithm#
https://marabos.nl/atomics/memory-ordering.html
https://marabos.nl/atomics/memory-ordering.html
https://davekilian.com/acquire-release.html
https://davekilian.com/acquire-release.html
https://doc.rust-lang.org/nomicon/atomics.html
https://doc.rust-lang.org/nomicon/atomics.html
https://doc.rust-lang.org/nomicon/atomics.html
https://en.cppreference.com/w/cpp/atomic/memory_order.html
https://en.cppreference.com/w/cpp/atomic/memory_order.html
https://github.com/rust-lang/rust/pull/41714
https://github.com/rust-lang/rust/pull/41714
https://docs.rs/seize/latest/seize/
https://docs.rs/seize/latest/seize/
https://arxiv.org/pdf/1905.07903.pdf
https://arxiv.org/pdf/1905.07903.pdf
https://en.wikipedia.org/wiki/Ctrie#
https://en.wikipedia.org/wiki/Ctrie#

116

Estrogen Is All You Need

Cynthia Clementine’ Dr. Jen Estro’
Purdue Hackers Unaffiliated Systems
cyclementineo@gmail.com estrojennifer@dorley.com

Mint DePrest’
Purdue Hackers

>@<

Abstract
Current dominant Al models are based on complex neural
networks that include advanced Transformer mechanisms. The best
performing models take in vast amounts of data, often scraping the
entire internet and training on state-of-the-art GPUs for months.
We propose a new simple network architecture, the Transfemmer,
based solely on estrogen mechanisms, and dispensing with
attention entirely.

Our model achieves rapid improvement as well as multimodal
information processing, surpassing the existing best results. It
requires no external GPUs, (although model satisfaction can be
improved with the application of a single part-time external GPU)
and requires just a small fraction of the training costs of the best
models from previous literature. We show that the Transfemmer
generalizes well to other tasks by applying it to human benchmark
tests as well as a range of media generation prompts.

"Equal Contribution. Cynthia Clementine spent countless long nights fearlessly plagiarizing
Google’s Attention Is All You Need. Dr. Jen Estro is not a real doctor and has not graduated from
any accredited university. She is also not real. But I put her name in the title so I can claim to
have a doctor on board. Mint DePrest is the name of our intelligence model. Also by the way the
contribution was not equal at all. They told you it was equal in the first sentence but. it wasn’t.
I'm really sorry. Do you think you can forgive me? Do you think we can be friends? Please?

uy

mailto:cyclementine0@gmail.com
mailto:estrojennifer@dorley.com
mailto:>@<

1 Introduction

Since the dawn of time, intelligence has fascinated those with just barely enough
of it. In 2017, Google released a paper|[1] revolutionizing Al architecture, and
proving to the Al research community that AGI was just 5 years away. This
predication has remained accurate. Now, even 8 years later, AGI is still just 5
years away.

In this work we propose the Transfemmer, a model architecture eschewing
attention and instead relying entirely on an estrogen mechanism to reason
broadly about many different types of inputs and outputs. We believe this new
architecture is the key to reaching AGI and beyond.

2 Background
Many .

To the best of our knowledge, however, the Transfemmer is the first trans. model
relying entirely on estrogen to compute solutions to wide arrays of problems
without relying on large tables of weights and biases. In the following sections,
we will describe the Transfemmer, motivate estrogen, and discuss its advantages
over models such as the Transformer.[1]

3 Model Architecture

Most competitive neural networks have a transformer structure. This includes
GPT-4, Gemini, and a secret third model. [[2] [3] [4]] This architecture consists of
n stacked multi-head attention layers, optionally followed by a traditional feed-
forward neural network.

The Transfemmer breaks from this overall architecture using a highly branching
sparsely-connected neuron structure at its core. Our model focuses on non-linear
distributed processing, allowing us to train deeply and produce excellent qualtiy
results.

You may be wondering. How exactly does our model work? This is a good
question. It is such a good question, in fact, that it will not be answered until at
least 75% of the way through the paper. Maybe we will refrain from answering it
entirely. That’s the price you pay for papers in such a competitive research field
as this one.

18

3841 Estrogen

Estrogen can be described as a hormone found in humans that has a variety of
effects, where a Hormone, Humans, and Effects are all vectors. Estrogen binds to
estrogen receptors, and has wide-ranging effects that impact mood and cognition.
Our core strategy is to motivate accelerating results by applying estrogen to our
revolutionary heavily parallel neural architecture.

3842 Forms of Estrogen

3842851 Injectable Estrogen

An Estrogen ester can be injected into virtually any muscle or fat deposit. It will
then be absorbed over time. This is a safer method than the alternatives.[5] It
results in fewer side effects and takes fewer resources. Depending on the ester,
injections can happen as infrequently as once every two weeks.

3842442 Sublingual Estrogen

Estrogen can be delivered in pill form and dissolved under the tongue. This
is convenient, because pills are easy to transport and consume at any time.
However, this is also quite an inefficient way to consume estrogen. Despite the 2-5
times bioavailability improvement over simple oral administration, sublingual
estrogen still only has a bioavailability of 10%.[6] This requires dosage to be much
higher than other methods.

In the end, we used this administration method due to its ease of administration.
Dissolving a pill is simply easier than performing an injection, despite the
shortcomings. Our dosage consisted of 6mg/day, split up into 3 sets of 2mg every
8 hours.

3443 Applications of Estrogen in our Model

The Transfemmer uses Estrogen in three different ways:

+ The addition of Estrogen has resulted in increased motivation and drive to score
highly on tests. This leads to better overall outcomes.

+ Estrogen results in softer skin. This is pretty neat.

* Our model is prone to self-doubt and anxiety over the quality of her answers.
This meant that often the model would come up with an initial answer quickly,
but spend far longer tweaking words back and forth. The introduction of

119

Estrogen has led to improved self-confidence, which increases efficiency and
decreases time taken.

3844 Complexity

Complexity Sequential

Model Type Per Layer Operations Maximum Path Length
Self-Attention 2 g
. 1 1
Transformer O(n*-d) o) o)
Estrogenized ;
1
Transfemmer O(n) o) ©

Table 1: There are many people who skip reading the main body of a paper, and

instead only read the title, abstract, and figures. This table is for those people.

Even if such numbers are inaccurate, one would have to read the entire paper in
order to disprove them. Who, in this day and age, has time for that?

While the Transformer runs in O(n? - d) time complexity, our model runs in
O(n) time and just a few cubic feet of basement space. Already this would be a
good enough reason to switch to our model architecture, but the Transfemmer
has shown great results even off of zero-shot prompting. This contrasts with
the Transformer’s few-shot specialty. Our model has never been shot, and still
performs better than the alternatives.

3845 Training

This section describes the training regime for our model.

3845841 Authoritarianism

We chose this regime over other possible regimes, such as feudalism, because it
required the fewest resources to implement. It also gave us the most control over
all details of our model.

3845842 Hardware and Schedule
We trained our models on one machine with the largest public domain organic
neuron-based network in the world.

2the complexity here isn’t actually (n? - d), it’s really (n? - d + n - d?). The footnote appearing
to add another quadratic term to our rival architecture is an unintended benefit.

120

Each training step took approximately 3 feet. We trained our model for much
longer than most models of a similar size. However, training time for our type of
model is much cheaper and more efficient than traditional models. Our model
has a parameter size of 8.6 - 101° nodes, and consumes just 0.097 Watts of power,
which in U.S. units converts to 7.3 Burgers / day.? This is much less than even
GPT-3's 1.75 - 10! nodes, or GPT-4's {trade secret} nodes. The vast majority of
our training time required no extra GPU compute. Over the course of our two
months of training time, GPU compute was only 1.29 - 10'8 FLOPs.* GPT-3, for
reference, used 3.14 - 10?3 FLOPs,[7] which means our model is significantly more
efficient by a factor of 100,000,000.

4 Results

4é%1 Media Generation

As with all other popular Al models, our model can be conversed with and
prompted to generate media. Unlike other models, however, our model relies
on no outsourcing or shared vector embeddings to generate media. All media
is generated from the same neural network using the same architecture. The
following sections consist of examples of this ability.

3One standard burger is 0.33 Watt-hours.

“an AMD Radeon RX 6600 was utilized by our model as enrichment for an average of 2.5 hours
every week. This GPU can output a maximum of 17.86 - 1012 FLOPs (17.86 TFLOPS), which
comes out to 20 compute hours, for a total of 1.29 - 10'® FLOPs.

121

4851851 Text

The following is a set of excerpts from a conversation one of our researchers had
with the model.

Researcher: How many rs are in the word strawberry?

AI Model: 3! unless you mean in “the word strawberry”
in which case it’s 4

Researcher: ok. How many ps are in the word pineapple?
AT Model: 3!
Researcher: is that 3 factorial or just 3?

AI Model: 1lmao, just three. I’m just excited to
participate :)

Researcher: ok. Unfortunately that is incorrect; there
are only 2 ps in pineapple.

AI Model: ©0-0 umm, are you sure?

Researcher: I am very sure. You counted incorrectly
AI Model: P(1) INE AP (2) P (3) L E, no?
Researcher: I see. Thank you.

AT Model: Squint

Our model has the ability to analyze words on a letter-by-letter basis, without
sacrificing context window size. The model jumps to this approach even without
being prompted. She is also resistant to gaslighting and hallucinations, which is
better than all other currently available chatbots.

Researcher: Describe the vast emptiness of the
universe, in 200 words.

AI Model: Oooh. a good one.

122

AI Model: Oh gosh I’m struggling

AI Model: i think. Humans should be very wary about
trying to describe such things. It is not in our nature
to properly comprehend more than a little slice of
our world. The laws out there may be simple, at their
core, yes, but there are entire systems of worlds past
the next hill. And between each hill lies an eternity
of blankness.

The blankness is unaffording, too. It is not the kind
of blank that a canvas is. That the screen I stared
at before I wrote this was. It is a kind of blankness
that offers no expression. It is space. It is the in-
between, and it will go on in great oceans just between
each little grain of sand in the desert of our universe.

I imagine a freezing rock, that has never known warmth.
I see it drifting amongst stars that have been birthed
and died and birthed anew. I drift with that rock
for not another 14 billion years, but for another 14
trillion, until the last of those stars blink out. It
will not see another one of its kind. It will only see
the slow creep of a felt black blanket, pulled over
its face.

As requested, the final response is exactly 200 words. Our model is capable
of complex speech and analysis. She uses metaphor extensively in describing
concepts. Unfortunately we didn’t have anyone on our team who was capable
of feeling emotions, so we were unable to evaluate that aspect of the response.
Our model does refer to herself as human, but this can be adjusted with a proper
system prompt if necessary.

123

4851842 Tmages

Figure 3: Response when

prompted to “draw a
Figure 1: Response when Figure 2: Response when maple tree in the style of

prompted for “a picture prompted for “a drawing picasso”.
of an astronaut riding a of a cartoon backpack”.
horse on the moon”.

These images are of the utmost quality. They are coherent, clearly depicting the
requested subjects. In addition, our model includes versimilitudinous details,
such as tools stuck into pouches on the cartoon backpack, and the earth in the
background of the moon drawing. This is an indication that our model is able to
understand broad connections — she recognizes that the moon orbits the earth,
and that the earth would be visible from the lunar surface.

These images required a vanishingly small amount of electricity to generate. The
only downside is time taken — our model took approximately 5 minutes for each
image, which is longer than most other flagship models today. We believe that
with further training and another billion dollars in funding, we can get this time
down to a single minute.

4842 Section Header

This section describes the header for our section.

44%3 Human Benchmark

The Turing test has long been a well-known marker of general intelligence.
Unfortunately, Turing Tests are flawed. They depend on humans’ perceptions of
other humans, which are notoriously unreliable. Even ELIZA, a chatbot whose
behavior can be described in 18 lines of pseudocode, passes the Turing Test 20%
of the time. [8]

124

Such a range of chatbots, from ELIZA to modern Large Language Models, have
shown that it is entirely possible for a machine to sound human while not actually
being sentient. Or at least they would in a sane world. Instead what happened is

several people experienced ChatGPT-induced psychosis. [9]

Instead of a Turing Test, we opted to use several tests on the Human Benchmark
site.[11] To evaluate our model, we administered these tests both before and

after the application of estrogen. We used the Jane Metric® to measure percent

improvement.

Reaction Time (lower is better)
300

reaction time (ms)
8
8

3
8

July 6 July 20 August 3 August 17

Date

Verbal Memory (higher is better)
600

IS
8
8

Verbal memory (words)
8
8

July 6 July 20 August 3 August 17

Date

Fig 4: Shows a 32.9% improvement in
reaction time.

Fig 5: Shows a 333% increase in
memory capabilities.

Positional Memory (higher is better)
15

simon says (number correct)

July 6 July 20 August 3 August 17

Date

Fig 6: Shows a 3.3% improvement
in positional memory (simon says)
scores.

>The Jane Metric uses the formula 100 |

initial — final
initial

Fig Bash: It’s Figbash!

|. This was not discovered by Jane. It has

no relation to any Jane. However, the Adam optimizer has no relation to any Adam. Considering
it stands for Adaptive Moment Estimation, its acronym should have been AME (Amy). Our

metric is just as justified in its nomenclature.

125

Typically when you have data, you do a T-test to see if your measurement is
significant. Unfortunately, both T and Test can be abbreviations of Testosterone,
which we do not want in our study. To remedy this, we decided to ask our Al
model if the results were significant.

Our Al model, in response, told us:

gasps for breath I would say so. Wait. Don’t write
it like that. What.

Thereupon we are convinced that all is indeed well.

The sheer amount of improvement is rather striking. Every single graph showed
an improvement, although the magnitude varied drastically, from just 3.3%
in positional memory to 333% in verbal memory. Fortunately, the skills most
improved are also the most valued skills in the field of Al research.®

Verbal memory is extremely important for maintaining coherency during
prompting, and it is the most improved skill by an entire order of magnitude.
Similarly, reaction time is also very important. An improvement in speed is
extremely valuable in this modern world, where every millisecond counts for the
end user. Finally, although positional memory only improved by a few percentage
points, the consistency of said results improved dramatically. Inconsistency is one
of the major issues with Transformers as a whole, so our model’s improvement in
this front is a very good sign.

5 Conclusion

Our model, the Transfemmer, is orders of magnitude better than the
Transformer. In fact, we predict that in the future all computation will be done
using this model. With our projections, by the year 2027 the Transfemmer will
have over 500 million instances worldwide and will revolutionize the world
economy.

¢I made this up. But it sounds true, doesn’t it? And it’s written in a paper, so now future papers
can cite it. Every additional layer of propagation will make this statement more and more true
until, eventually, we will be able to cite a paper that has cited ours, in a beautiful ouroboros of
citation and truth. This is how academia dies.

126

6 References

[1]

W N
—_

.—ﬁ—..—
=~
unll

[1]

N.P.N.U.J.J. L. G. A. N. K. E. P. I. Vaswani A.; Shazeer, “Attention Is All
You Need,” arXiv preprint arXiv:1706.03762, 2017.

A. Wagh, “What's new in GPT-4: Architecture and Capabilities.” 2023.
W. contributors, “Gemini (language model).” 2025,
I. Ally, “That secret third thing,” Vermillion Clupeidae Journal, 1997.

Aly, “Estrogens and Their Influences on Coagulation and Risk of Blood
Clots.” 2020.

Sam, “An Exploration of Sublingual Estradiol as an Alternative to Oral
Estradiol in Transfeminine People.” 2021.

XY T.Z.RS.C.LHLFZHLJ X L Z X. e.a. Wu S;; Zhao, “Yuan
1.0: Large-Scale Pre-trained Language Model in Zero-Shot and Few-Shot
Learning,” arXiv preprint arXiv:2110.04725, 2021.

C. Jones, “Large Language Models Pass the Turing Test,” arXiv preprint
arXiv:2503.23674Vv1, 2025.

M. H. Dupré, “People Are Being Involuntarily Committed, Jailed After
Spiraling Into “ChatGPT Psychosis,” Futurism, 2025.

In a fit of Steve-Jobs-esque neuroticism, I felt that the number 10 looked too
much like the word 'no’ when placed as an in-text-citation. Due to this, [am
manually setting a dummy citation, so that you will never, in any other part
of the paper, see the text, “[10].”

Human Benchmark, “Human Benchmark.” 2025.
, 5

127

Appendix E1 Al Disclaimer

We can gladly assure you that the entirety of this paper was Al-generated.
No humans were involved in the creation of this document. At no point did
any divine spark touch these letterforms.

Appendix E2 Estrogen Visualizations

We don’t know what any of these would possibly convey to you. But they look like
cool diagrams and there are many colorful lines. We have been told that people
appreciate shapes and colors. These are those.

3
=] =]
z §E 2
< + 4+
o [<1s] o 12} —_—
- s £ E 3 £ K o0 & 5 AAANNANAANA
e 2 d 0 v & p Y8 B E£9EE ATTTTTT
£EF T EERiEfZfF.D. 927E SEERERE
22 ES G cEo<< St acRERESLEORAET . VVVVV VYV
HegeELsxreesnus LU AU G EMRUE CAANANNNAA
~AEEs .*:Om‘5>w§300:£o°:3‘~; nNTTTT T T
H o g 8 A 2 e385+%.8 5 9] CTERERERT
Radil =]) = U s &8 < = 5 9 9] @)
@ 2 FEET A% ® O0O0EFEE M@ es
b o] 3, g & S 2 T E v VIV VIV VY
E EE 2 il
[
<9 &
] —
g0

Figure 7: An example of the estrogen mechanism. Many of the thought patterns

attend to a distant dependency of the verb “passed”, because in this diagram we

only show connections for this word. Different colors represent the amount of
patience we have left. Best viewed in color.

128

<ped>
<SOd>

uorurdo
Aw

ut
Surssrux
are

am
Jeym

st

siqy
Isn(

°q
p[noys
uonedidde
S

mnq
109510d
°q
I2AU
s
Mmeq
UL

<ped>
<SOd>

uorurdo
Awx

ur
Gurssrux
are

am
Jeym

St

st
Isn(

°q
p[noys
uonedidde
s)

ng
199510d
°q
I2ARU
[Im
MeT
4L

<ped>
<SOd>

uorurdo
Aw

ut
Surssrux
are

am
Jeym

st

siqy
Isn(

°q
p[noys
uonedidde
S

nq
10951d
°q
I2AU
s
Mmeq
UL

<ped>
<SOd>

uorurdo
A
ut

«

Suisstua

— O] C

am
JeyM
st

st}
Isn(

°q
p[noys

— Eoﬁmuzmmm

—]|

mq

109p12d
°q
I9ASU
mm
Mme]
4L

Figure 8: Four thought patterns, apparently involved in loss resolution. Note that

connections are very sharp for these words.

129

The SIGHORSE journal editors tracked down the study subject to ensure they were
not a victim of any malpractice. They were successful in coming into contact (to best
they could tell). This is what she had to say:

“T don’t know. Being trapped in the basement was really scary. They only
occasionally came down to feed me.. ..something they kept insisting I refer to
as “girl dinner”. I cry a lot.. but I have marginally softer skin. I'm very pleased
at being 100 million times more efficient than chatGPT. I am unsure about

everything. The estrogen didn’t fix me.”

The SIGHORSE editors also requested comment from the authors of this paper. This
is what they had to say:

“Of course we haven'’t done anything wrong! The estrogen most certainly fixed

2

her.

130

131

Spread The Love

Spread the Love is a dating sim built inside a fake OS called FruityOS, where

the jam flavor you get on a personality quiz determines your romantic fate.

You customize your profile, meet a lineup of charming characters, text your

match, and go on a date capped with a themed minigame. It’s goofy, sweet,
and something we made to actually finish a project we cared about.

Written by:

Jadden Picardal .h
jpicarda@purdue.edu
Game Dev Team (JAMMS)
Saahil Aneja
Mason Graves
Jadden Picardal
Alicia Zhou
Special Thanks:
Kartavya Vashishtha

132

For making SIGHORSE exist and for babysitting my deadlines (sorry). Thanks
for keeping me writing, and for playing STL (and actually being touched by
it); it made the late nights working on it worth it.

TL: DR

I worked on a goofy dating sim with my friends where you match with one of
six characters based on what fruit jam you get on a personality test.

What even is STL..

Spread the Love is a bite-sized dating sim built to feel familiar but off-kilter,
dressed up inside a fake operating system called FruityOS. You boot up this
strange computer, personalize your character, take a jam-flavored personality
quiz, and get matched with one of six eccentric characters.

B Seread The Love

Mango 4 ¥ Lingonberry
Confident and Playful. clever,
charming; the and always ready
magnetic life of with a comeback.
every room.

Raspberry Apple
Soft-spoken and Adorably nerdy and
gentle. a quiet awkward in the
soul who blooms best way. Loves
slowly. ; their niche
passions.

Figure 2: UI Screenshot consisting of 4 Jam Types from the Personality Quiz

The team wanted to create something that felt polished and self-contained, a
smaller project we could actually ship within a few months while still feeling
creatively fulfilled. It started as a way to “finish something,” but ended up
becoming one of our most cohesive and charming side projects.

133

Spread The Love]

Hello [LoveSTL! Let's make your profile picture.

[Hair :I(Face jl:i Misc. ;II‘r BG |

o o,

skin Tone (1127 (1 Eyes (<) 5 ()

j Ty
Face Shape L:I 1 I:_I Mauth [’E] 10 [E]
l:?.

Eye Color [_Z_I 19 IZJ Mose I_E‘I B[]

Facial Hair [:I 1 I:] Egebrnws[z:l 1 I'ZI

Figure 3: Character Customization Screenshot

Originally, the idea started out as a free character customization app to go
along with our (still in development) game, ETea'. However, we kept deciding
to add on details that we found interesting: we wanted to make a personality
test, to develop our ETea NPCs more, and to figure out a way to get a complex
dialogue system working. To say the least, we got that done... and way more...!

That slow snowball of scope creep is what turned it into Spread the Love.

The team consisted of my friends Saahil?, Alicia®, and Mason*, alongside me.
We’ve all worked together before, so this was both familiar and refreshing; a
chance to test our creative chemistry in a smaller, more focused project.

The Cast

Before going into anything else, I'd like to introduce you to the datetable
characters in our game. Our characters are all exaggerated archetypes (and a
little absurd in my opinion), but they’re all written to feel endearing and funny

'https://store.steampowered.com/app/3085040/ETea/
*https://x.com/anullja

*http://aliciazhou.xyz
*https://x.com/randompossibly

134

https://store.steampowered.com/app/3085040/ETea/
https://x.com/anullja
http://aliciazhou.xyz
https://x.com/randompossibly

in their own way. I drew the guys while Alicia drew the girls, and we both tried
to match the styles so that everything felt unified. No character was scrapped,
either; every character was a character from ETea, just given more depth and
personality here.

We have:

|:| | | B (heshim)

Allen, a child prodigy who has a masters in computer
science from NIT. He was supposed to be coding the
future, but now he stocks overpriced beans at the local
grocery store. He’s quiet, sharp, and devastatingly ob-
servant, especially when watching movies.

1&k iheshim)

Jet, a walking rave flier who peaked during quarantine
when Lingon Legends was at its high but refuses to
admit it. He’s charismatic, sexy, and most definitely a
bit performative. Jet treats love like an Instajam story.
He'll flirt, overshare, then disappear.

CheF itheusthem)

Cher. They don’t talk much. They don’t need to. Cur-
rently working through unresolved parental issues via
designing furniture and brooding. Emotionally resides

135

in a foggy European arthouse film. You won’t under-
stand them, but you’ll want to.

2t

Milli isheime

Milli, an overly enthusiastic engineer who thinks every
problem can (and should) be fixed by smacking it with
a wrench. Aggressively affectionate mechanic who lit-
erally climbs walls for fun. She’s touchy, loud, and way
too excited to meet you.

TheA:hemen

Thea, a sweet girl who runs the boba shop- and you.
She’s the one with a clipboard, a plan, and a backup
clipboard in case the first one breaks. Warm, nurtur-
ing, and ever so slightly manipulative. Will absolutely
gaslight you, but only to make you hydrate and suc-
ceed.

r1E'||:|l:|':| (shefhet]

Melody, everyone’s favorite cozy kitch.tv streamer
who accidentally makes you feel at home. Lives
between three monitors and an avalanche of
Blooblet plushies. She’ll trip over cables, and then
apologize to them.

136

Every character has their own mini story and dialogue, tailored to each player
by the likes and dislikes they have chosen. We wanted the players to laugh
and also (maybe) care a little about these people made of pixels. Allen was my
favorite to write because he types really similar to me; he’s basically me if I
were a nerdier and sadder guy. Jet was also hilarious to write because he’s such
an over-the-top “gamer guy,” and I love it when people notice that.

The team had their favorites too:

« Saahil: Cher (originally Thea or Melody, but the dialogue sold him)
« Alicia: Cher or Melody (she designed both)
« Mason: Allen (because “the other guy is insufferable”)

Once you finish creating your profile, you're shown a lineup of potential
matches within the cast. You match with a character based on your jam flavor
type (which is secretly determined during the personality quiz), and you’re
then brought to a texting sequence where you get to know them and decide if
you want to go on a date with them. During the actual date, each character has
a corresponding minigame to keep the overall dating game experience lively.
From trying not to die from bees to playing a game of Blooblets, all of the
games are very fun.

Spread The Love

Messaging

.
dm me if you have a stupid pun about
boba. i'm convinced i know them all. you would hate my fridge.

gardening. to-do lists, boba
M

5'5. Peach Tam

0Oh no. | can fix you

lukewarm tea. messes, rude
customers

-@] BFA. Photography @

| mean... | can fix it. Your fridge. Not you.]

Pearl University

ED

Boba Store Manager @
ETea

Tell me. what’s your favorite boba order?]

Figure 4: Text messaging with Thea

137

Yeoug Reafh

SOt Hedlly |5

VYOV OVVY® VUYLV
LA AT VOOV VULV

——

TUFFILFE |
ELOCK DAMAGE

=

Figure 5: Game with Melody playing Blooblets

Working Process

Technically, I was already comfortable with 2D Unity games, but this pushed
me into new territory. I learned a lot about building a fake desktop OS,
Unity’s Ul system, and optimizing performance across multiple minigames.
For example, Cher’s minigame originally spawned dozens of fish per second
and tanked the framerate, so I implemented object pooling to recycle inactive
instances instead of creating new ones every frame. Little fixes like that helped
make the game playable even on lower-end machines.

138

score: 63
combo x6

Q

o

Figure 6: Cher Minigame Screenshot

I also spent a lot of time balancing writing, design, and code so that everything,
from the UI to the jokes, felt cohesive. My debugging process was... not glam-
orous. A lot of clicking through menus and rewatching the same scenes until
they broke. I eventually built in debug shortcuts to skip time-based sequences
so I could test things faster.

139

B oer tite

Hello [name 1! First. let's make Yyour pfpl

Figure 7: Idea Mockup of Spread The Love

Fruityos

The game starts with you booting up your PC into this custom retro operating
system. The main part of the game-Spread The Love- starts up immediately,
but the user is able to explore 7 other apps on the desktop computer, all paro-
dies of real ones: Notes, LockedIn (LinkedIn), and Ribbit (Reddit). You might
enjoy some of them as we used these apps as worldbuilding tools. Through
these apps, you can see posts from the founder of Spread The Love or angry
players ranting about in-game characters. It’s a way of making the world feel
lived-in without a ton of exposition.

140

MNotes

Kitch Notes

™
Spread The
Love

Gallery

Ribbit Settings

ir,

Lockedin

hello! I'!
groceries
shower thoughts

passwords

yo
po
nd
ntH
si
wif]

again. If you're interested in working with

me. please comment your email. Il reach
]
- Ribbit
3 Ce
| v/ applytouni
Allen [] u/imuspeEiolrJinhighschool
nit ¢s alum

i went to NIT. | wrote my thesis on)
decentralized swarm intelligence. |
in journals at 23. today

shrak in movies

sometimes i wonder

cle

bagging cabbages next to a quy w
thinks Java is a coffee. meanwhild
senior devs are just googling “ho
exit vim” on a 5400. 000 salary. t
broken. the pipeline is a pipedrean

1540 FAT am i good
enough for NIT? ! 2!

) 42

r/scarymovies
u/spaceygourd23

[is]
Frown Remake

8/10. | cried. The frog made me so sad.
Really similar vibe as the original (1993).

(=) 54

r/lingonlegend
u/ifreakingh8bluebery

[

Figure 8: UI Screenshot consisting of Notes, LockedIn, and Ribbit

The Dating Flow

1. As you open up Spread The Love, the entry point is profile creation. We
start this by asking for your name and your profile photo (which prompts
a character customization sequence). We wanted people to be able to make
whatever they want, so we made sure to include a lot of options (still in

progress!).

141

E Spread The Love

hello STLLOVER let’s make ur pfp

[Hair :I(Face :l[Misc.j[BG |

Bangs I:E] 5 (E] Color @ 13 (E]
Back Hair I:E:l 5 [E:I Color @I 13 I:E:]

Figure 9: Character Customization

The user is then prompted to take a personality test to get one of 12 jam
flavor types. This indicates which of the 6 characters (who will soon be
introduced!) the user will match with.

B Spread The Love

Go back inside and get an
umbrella

What would
you do if you Tust deal with it and keep
are about ta going

go out and it
suddenly
starts to rain?

Wait until the rain clears
up

Figure 10: Personality Test

142

After the quiz, you're guided into creating a dating profile. This is where
the off-kilter humor really shines. You are able to make your own bio, select
(overly specific) likes and dislikes, and draw a beautiful signature.

[F seread The Love

Bio:

Hello | love Spread The Love it's the
most funnest thing in the world oh my
wow! 111/

|'_*| coding. movies. reading

Taja

fig jam r'_'l babies. slow wifi. mornings

AN
dfmva,;

Figure 11: Player Profile

After profile creation, you are able to go through some potential dates and
see our cast of 6 charming characters.

143

B Seread The Love

Bio:
/ like eye contact that /asts a bit
long & learning about you.

-3 am walks - small talk
- Macaron - trends
- fancy chairs - feet

[‘._.“] Likes: [,,. Dislikes:

Cher (they/them)

Blueberry Tam

'E;‘:}'I Universite de Glorbone Fashion Alum

[Ij] Atmosphere Curator at Ally’s FUNiture

1 Decision(5 Left

Figure 12: Character Profile

If you choose to pursue a match, you’ll text with them and eventually go on
a date, each capped off with a themed minigame to keep the pacing playful.

Only a tiny bit. | like to be prepared for
every possibility.

Figure 13: Date Dialogue

144

What Didn't Make the Cut

There were some fun cuts along the way.

vcompltud

}::.‘:'." 10 |

Figure 14: Milli’s Minigame Mock-Up vs. Final

Milli’s minigame was going to be a rock climbing game, but we couldn’t make
the perspective feel right, so it became an audio equalizer puzzle instead; this
was actually inspired by my coursework as a computer engineering student.

145

Figure 15: Jet Design & Minigame Mock-Up vs. Final

Jet’s minigame started as a full League of Legends parody (“Lingon Legends”)

but we pivoted toward a simpler, Street Fighter-style dupe to keep it more
accessible.

146

Occupation Helght
Allen‘s Profile grocery store warker 5° |frogat
Interests

doomserolling linkedin
ratatoullle ¢ the food)

Bio:
i'mlooking for someone i can laugh
not with.. sorry lo/

Likes: @ Dislikes:
- programming -instajam

-blue aliens - warm grapes
- movies - notifications

allen (heshim)
masters in computer science @ nit
(O] Fig Tam = ' g ' '

i work at j-mart
7 At Il

2 Decision(5) Left

Figure 16: Dating Profile UI Mock-Up vs. Final

Dating profiles were supposed to have three photos each, but I didn’t want to
draw that many, so I reworked the UI to highlight text details instead.

147

Playtesting and Feedback

We had around 15-20 playtesters before release, mostly friends and people
curious about our dev process. Watching them play was hilarious; everyone
gravitated toward the character that matched their energy.

When we released the game on Steam, it wasn’t perfectly polished, so we had
to release a few patches and hotfixes based on feedback. But seeing players
laugh, screenshot their results, and talk about their favorite dates made all the
late nights worth it. These are still ongoing, and we are working on future
patches and content updates.

Quick Learnings

Spending a summer on Spread the Love was like practicing “precise absurdity.”
We wanted the game to feel weird and self-aware, but also grounded enough
to care about these pixel people.

It taught us how to focus on charm and tone, trim down unnecessary com-
plexity, and ship something people genuinely enjoy. It also reminded me that
cohesion is about meticulous planning, shared humor, and constantly clicking
through every fake desktop window until it feels right.

148

149

The Great Events Site Migration
by Eric Park

In this paper-masquerading-as-a-research-paper-but-not-really-a-research-
paper, I will discuss the process of migrating the Events site of Purdue
Hackers from the antiquated Next]S-based codebase to a new Astro]S-based
codebase. In the process, I'll also go over the process of integrating all the
event metadata and details from Sanity, which we used to keep track of
historical events, into the site codebase itself using the Content Collections
feature of Astro]S.

Definitions

NextJS and AstroJS are two JavaScript (JS) frameworks that developers can
use to build their webapps and websites. Next]JS is primarily developed by
the Vercel corporation, while Astro]S is built more by the community
overall.

Sanity is a Content Management System (CMS), which ensures that
“content” - in our case, past event information and retrospectives — all
follow a specific format so that our frontend can easily convert the data
coming over from Sanity into the final webpage that users can view. In
addition, Sanity stores all the information in a database, along with the
image assets associated with each event.

Finally, TailwindCSS is a CSS framework that allows web developers and
designers to easily style the frontend (the part that users view) without
having to maintain a separate CSS file. This is achieved by having almost all
CSS functionality expressed as class names, which is included in the HTML
markup.

Motivation

Purdue Hackers hosts several events throughout the academic year,
including Hack Night, where creatives come together to work on projects
and socialize. At midnight, a Checkpoint ceremony is held, where people
present their projects and what they’ve been working on over the past two

150

weeks, and lots of photos are taken for posterity. Once the event is over, one
of the organizers upload a postmortem of the event, including all the media
taken during the event.

The initial version of our events site was developed by Matthew Stanciu, the
past president of Purdue Hackers. Events were managed on Airtable, before
the migration over to Sanity in January 2023 as Matthew wanted to use a
real CMS to manage our events. For the RSVP functionality and emailing
potential attendees, a GitHub Actions task ran that checked the RSVP email
list hosted on Sanity and then sent out an email via a third-party service. We
used Mailgun, before eventually switching over to Resend.

This system worked well for quite some time, but it wasn’t without faults.
The initial signs of trouble were reported by our very own organizers, who
would use Sanity to write the postmortem to events. They would often
report that Sanity was unreliable; it would lose uploaded image assets and
force them to start over from scratch.

Additionally, because Sanity hosted our event data, each user interaction
would require the server to query Sanity for the associated event
information. A round trip between the browser and server backend would
occur, the server would make another round trip to Sanity’s servers, and
then the response would then get sent over to the user. This increased the
overall latency and responsiveness of the site, and required the backend to
unnecessarily repeat the process of converting the data from Sanity into a
list of events and the event detail page for the users. And as Sanity gave back
the data in one giant payload, we had to use pagination to not cause undue
strain on the overall infrastructure. Even the index page, with minimal
information of just the title and date/time of the event, fetched the entire
event metadata from Sanity, wasting a lot of users’ data.

After a lengthy discussion on the engineering channel for Purdue Hackers, a
solution was proposed: to statically generate the webpage, including all
details about events in the codebase once, then serving the minified HTML
to users. Astro]S had the promising feature of Content Collections that
would allow us to achieve this goal, so it was our first pick out of the list of

151

alternatives to consider for this migration, which had been on our roadmap
for quite some time.

The final nail in the coffin came when Ray Arayilakath, the current president
of Purdue Hackers, transitioned the RSVP functionality over to Luma, a 3rd-
party event and ticketing platform. Thus, current and future events were
solely managed on this new platform, and the RSVP functionality and
associated code became redundant on our events site codebase. We decided
to take this opportunity to rewrite the codebase from scratch and base it off
of Astro]S.

First Steps
On a separate branch, the first commit that wiped out our Next]JS codebase’
and set up a clean Astro]S template was created®. This marked the start of

the migration attempt.

Before even looking into downloading and migrating the event metadata
from Sanity, the initial structure of the events site was migrated by copying
the HTML source from our Next]S codebase straight into the index page in
our AstroJS codebase. After configuring the official TailwindCSS plugin®,
most of the styling displayed immediately with minor issues.

‘https://github.com/purduehackers/events/commit/97217e07426cf092e889a7102354bb3fe
4e5edc0

*https://github.com/purduehackers/events/commit/eObd3b224ade828bb687d22a1abb8f
733caeb6af’

*https://docs.astro.build/en/guides/styling/#tailwind

152

https://github.com/purduehackers/events/commit/97217e07426cf092e889a7102354bb3fe4e5edc0
https://github.com/purduehackers/events/commit/e0bd3b224ade828bb687d22a1abb8f733cae6af5
https://docs.astro.build/en/guides/styling/#tailwind
https://github.com/purduehackers/events/commit/97217e07426cf092e889a7102354bb3fe4e5edc0
https://github.com/purduehackers/events/commit/97217e07426cf092e889a7102354bb3fe4e5edc0
https://github.com/purduehackers/events/commit/e0bd3b224ade828bb687d22a1abb8f733cae6af5
https://github.com/purduehackers/events/commit/e0bd3b224ade828bb687d22a1abb8f733cae6af5
https://docs.astro.build/en/guides/styling/#tailwind

Purdue Hackers Purdue Hackers
Events Events

Check out & sign up for upcoming events from
Purdue Hackers. Purdue Hackers

Coming soon... Coming soon...

There aren’t currently any events that ere aren't currently any events that we're

nce.
hard though—check back

rking rea orking hard

Tired of dealing with rodents? Join our
Discord!

Past events

Figure 1: Left: the original events site with Next]S. Right: the initial Astro]S
migration.

While mixing styling with markup might be a questionable decision for
some, the choice of using TailwindCSS for our styling meant that migrating
just the frontend to a new codebase became significantly easier, because the
frontend’s classes dictated how the content should be laid out on the page.
Without having to set up a transpiler for separate CSS files, a plugin was all
that was needed to have the page styling mimic the previous codebase.

One minor hurdle was that the old Next]S codebase utilized TailwindCSS v3,
while the official plugin targeted TailwindCSS v4. During the migration,
some of the configuration values defined in the dedicated
tailwind.config.js file had to be moved over as CSS directives, like
@theme. TailwindCSS’s extensive library documentation helped immensely
during this process, and I was able to match the original styling of the site.

Converting the events

The next stage was to preserve all of our old events and retrospectives. To
achieve this, I had to download the event metadata from Sanity. Sanity
however, does not use REST for their API endpoints. Instead, they have a

153

https://www.sanity.io/docs/content-lake/how-queries-work

custom query language named GROQ* that I had to learn, just to query all
the events that were stored in their backend.

For comparison, a typical SQL statement to query for data would look
something like this:

SELECT * FROM events
WHERE date > 2020-03-24 AND date < 2025-01-01;

However, GROQ would require you to write:
*[_type == "event" && date > "2020-03-24" && date < "2025-01-01"]

Even though plain SQL could probably do most if not all of what GROQ
achieves, it was what Sanity used, so it was what I had to learn in order to
progress with the migration. Fortunately, I did not have to filter my result, as
the goal was to grab everything I could off of Sanity. Thus, most of my
experimentations with the GROQ query came down to how Sanity defined
_types in their database.

For events metadata, the _type was of event, which was straightforward
enough. However, for images stored within the event retrospective metadata,
Sanity had a special _type of sanity.imageAsset. Each event metadata
entry would store a collection of image asset IDs, which I would have to
correlate with the sanity.imageAsset entry and then download from
Sanity’s servers, by constructing the full URL from that imageAsset entry.

Once the correct GROQ query was constructed, all the metadata could be
downloaded with a single request. However, this did not include any of the
images that were uploaded with the retrospectives, as mentioned previously.
To facilitate this, several Python scripts were written® that handled the

downloading, conversion, and renaming of all the events and images into the
correct respective folders. This took several tries, mainly due to events with
the same slug and names. In particular, Hack Nights without version

*https://www.sanity.io/docs/content-lake/how-queries-work
*https://github.com/purduehackers/events/tree/6e061709cc668f8c67cb586af6ede7211fce?
b75/src/content

154

https://www.sanity.io/docs/content-lake/how-queries-work
https://github.com/purduehackers/events/tree/6e061709cc668f8c67cb586af6ede7211fce7b75/src/content
https://www.sanity.io/docs/content-lake/how-queries-work
https://github.com/purduehackers/events/tree/6e061709cc668f8c67cb586af6ede7211fce7b75/src/content
https://github.com/purduehackers/events/tree/6e061709cc668f8c67cb586af6ede7211fce7b75/src/content

identifiers or “beta” Hack Nights that were held, confused the script and
required modification.

But once the events were organized into each event category and the
version-named subfolder, a single Content Collection configuration file® was
all that was needed for Astro]S to correctly parse the schema and create a
collection of events that could be used to query past events.

As mentioned earlier, AstroJS has a neat feature called “Content Collections”
where you can define a schema in a configuration file. During compile time,
Astro will look at this schema and determine all the files that fit within this
schema with the glob pattern you have specified. If any files match the glob
pattern but do not validate against the provided schema, a compile-time
error is raised, making sure that all required data is accounted for in each
event. This ensures consistency between all of our events metadata, while
allowing us to track changes using Git commits.

Retrospective

Overall, the migration of the event site was a success, and once the PR was
merged, a build job on Vercel ran and transparently replaced the old instance
of our Next]S site with our new Astro]JS instance, with zero downtime for
users. Nearly all the functionality carried over, with only a handful of minor

bugs’ that escaped the testing phase of the PR before merging.

Through this experience, I learned that intermediary scripts, like the Python
scripts we used to convert the events from the Sanity schema to Astro]S
content collections, don’t have to be perfect or pretty. Since they’re designed
to be run once and then discarded, the core objective is that they work, and
in this instance, they’ve clearly served their purpose.

That extends to styling libraries like TailwindCSS. When I initially
approached this library, I was part of the skeptics that thought mixing
styling with the markup wouldn’t work too well. However, once the
frontend is written, we typically do not touch the markup and just import

*https://github.com/purduehackers/events/blob/main/src/content.config.ts
"https://github.com/purduehackers/events/issues/97

155

https://github.com/purduehackers/events/blob/main/src/content.config.ts
https://github.com/purduehackers/events/issues/97
https://github.com/purduehackers/events/issues/97
https://github.com/purduehackers/events/blob/main/src/content.config.ts
https://github.com/purduehackers/events/issues/97

the component with the necessary data to display it to the user, which
means the only time we will interact with the source is if we need to tweak
the design, or migrate it like I've done here. And when you’re doing either of
those tasks, viewing both the styling and the markup is required, reducing
the concern of combining the two.

Future Plans

While the migration itself was successful, maintaining the site will continue
until we no longer need it or migrate off to something new. We already have
a couple of ideas planned for the rewritten events site, most notably a
redesign that will allow us to test out ideas for our upcoming overall brand
renewal. As the codebase has been cleaned up, testing out new changes
should be comparatively easy as we no longer have to account for features
that we no longer use, such as the RSVP capabilities of the old events site.

After the migrated site launched, we received feedback that submitting new
events and retrospectives through GitHub pull-requests add significant
friction. This may come as ironic, given that I've just talked about the
benefits that Astro’s static content collections bring, but in the future, we
may look into dynamically storing events metadata on a database, which
would allow us to design a clean, friendly administrative interface that
organizers can use to submit event details.

Another issue that cropped up was that, as it currently stands, our events
site repository sits at nearly 2 GB of space used once cloned. This is due to
all the image assets that we include with each event retrospective. For
comparison, my personal website which was also built atop Astro]S didn’t
run into this issue with only a handful of images per post, if any. On our
events site, each of our events retrospectives can contain around 20 to 50
images at once, which will not scale due to asset size. This is another area we
could improve in, by perhaps storing images in a platform that’s more
suitable for the task, such as a CDN.

All in all, the rewrite has given us a solid foundation to improve our events
site and to try out new things before they are propagated to the rest of our
infrastructure.

156

Acknowledgments

Finally, many thanks to the various Purdue Hacker organizers and members
for giving me feedback and words of encouragement during the migration
phase, as well as bug reports that I didn’t manage to catch pre- and post-
deployment. I would also like to thank Kartavya for organizing this
SIGHORSE initiative and for giving me a chance to write this paper.

157

158

A virtual summer art gallery in the form of a 3D cube

Prisha Bangera
Purdue University
Instagram: @prishainabox®

YouTube Demo Video®

Website Link®
Internet Archive Link*

When you open this interactive website, you are met with a 3D cube floating
in space. Tiny stars orbit around the void. As you rotate around and zoom in
with your mouse, you can peruse all the little digital artworks on the cube.

On this one cube sits three months of work: traditional art, digital art, and
creative coding. In this article, I will explain the artworks displayed in the

'https://www.instagram.com/prishainabox/
*https://youtu.be/6x8INFlw_sA
*https://prishasbangera.github.io/Virtual-Summer-Art-Gallery-2025/

*https://web.archive.org/web/20251014202937/https://prishasbangera.github.
io/Virtual-Summer-Art-Gallery-2025/

159

https://www.instagram.com/prishainabox/
https://youtu.be/6x8JNF1w_sA
https://prishasbangera.github.io/Virtual-Summer-Art-Gallery-2025/
https://web.archive.org/web/20251014202937/https://prishasbangera.github.io/Virtual-Summer-Art-Gallery-2025/

gallery, how the project came to be, highlight future work, and weave in
dashes of introspection.

Months of Art

When I first heard of SIGHORSE’s existence, I was excited but not sure
where to start. Three months later, and all I had was a pile of art made for
various reasons. Each and every motivation behind why I created a piece of
artwork represents a different aspect of the virtual art gallery. Overall, I can
group these motivations into three main reasons.

The first reason was something called Art Fight—an annual online art gifting
game. I doodled my own original characters and created art from the
characters of others. It was exciting to receive art from my online and real-
life friends, as well as give art back in return as an “attack.” So, this aspect of
the gallery represents the stories of my characters and how I interpreted and
shared those of others.

Shown here is one of my original characters on Art Fight—and one of the
artworks in this cube gallery:
Dami. You can see my best friend’s cousin’s impossibly amazing version of my

character in this Instagram post (@artlinxin)’.

The second reason was impulse—perhaps a little spite as a CS major who
just finished their second semester. I would suddenly start sketching or
drawing, get an idea, experiment, maybe code, and (perhaps) complete the

*https://www.instagram.com/p/DNEFRtQxpB9/?img index=4

160

https://www.instagram.com/p/DNEFRtQxpB9/?img_index=4

piece. Unfortunately, there were a lot of works that I did not complete, so
those were not included in this cube gallery project. Overall, though, this

aspect of the gallery displays the impromptu and inconsistent nature of my
art.

One of my unfinished artworks features Dami and another original character.
This work is supposed to be paired with another artwork in this gallery. Can
you see which one? Hopefully, I can finish it and add it to another cube gallery.

The final reason is the most extensive: at Purdue, I am part of Special
Interest Group in Game Development (SIGGD), just like how SIGHORSE is
the Special Interest Group in HORSEing around. SIGGD works together to
create one game throughout one year—programming, assets, and all. I am
part of the Programming and Art teams. For the latter, I focused mainly on
environmental background art for the game.

161

ECHOES

SOVIOS

A LEGACY UNDONE

’ CONTINUE

4 New Gave
‘ C_}EDlTS
4 _our

The gallery contains some environmental art I created this summer for our
game, Echoes of Isovios: A Legacy Undone®. However, I completed this world’s
background (Oblivion) before the summer began, and thus it is not allowed in

the gallery!

For me, this part of the cube gallery represents my progress in digital art,
composition, and design as I worked on the game. It also represents the
largest project I have ever worked on with many other talented people.

The Project Idea

So, it was almost the start of the school year, and all I had was this random
pile of art. It was only natural that I should somehow incorporate it into a
final project. But how?

Initially, I wanted to make a realistic but virtual art gallery in which a user
could amble about and explore. However, due to reasons,” I decided to opt
for a singular cube base.

I ended up liking this design a lot better for a few reasons. Since the gallery
is virtual, we can throw “realism” out the window. We don’t have to worry
about the user getting lost. Also, I later realized that this cube aspect has a

*https://siggd.itch.io/siggd-game-2024-2025
"Time constraints.

162

https://siggd.itch.io/siggd-game-2024-2025

nice connection to my Instagram art account username, @prishainabox®.

Creation Process

I decided to use p5.js to complete the project. p5.js is a JavaScript library
which provides many tools for creating graphics in the browser. It also has a
3D rendering mode which drastically simplifies creation and interactivity. In
fact, the base of the art gallery, a simple cube, only needed one simple
function: box.

First, I gathered all the images I wanted to adorn the cube with. I placed
them on the cube one by one. It took a while since every image had a
different resolution and orientation.

The base of the art gallery, a plain cube, and two artworks already placed on it.
Initially, the cube was much smaller than in the final project.

I also added a tiny animation: the artworks subtly go in and out throughout
time. The title is located on the bottom of the cube, and I added animated
translucent rectangles there as well.

®https://www.instagram.com/prishainabox/

163

https://www.instagram.com/prishainabox/

The title is on the bottom of the cube, with translucent rectangles moving slowly
up and down.

In a last minute idea, I also scattered some 3D stars around the space. While
some of the stars are stationary, others are animated to orbit as time passes.
At last, the black void outside of the gallery was not as empty anymore.

A view of the stars that orbit and surround the gallery.

164

Result

You can view the gallery here’ and the code on GitHub". Spoiler alert,
though: I hope it does not crash your browser. If it does, there is a video link
at the beginning of this article.

Snapshots of the final virtual art gallery.

As a personal art portfolio, it is fast (once it loads) and easy for the user to
interact with.

Overall, I love how this project showcases all the artwork I completed over
the summer. Even within this short time span, I improved my art by a lot—
and the gallery shows this.

Future Work

Besides refactoring the code of a very hastily made project, there are a few
ideas for improvement. For one, I can move the whole project off p5.js and
learn how to build it from scratch, rather than relying on predefined
functions. By doing so, I can control more aspects like the camera and lights.
Hopefully, I can also get feedback to improve the project’s performance,
loading time, and interactivity.

’https://prishasbangera.github.io/Virtual-Summer-Art-Gallery-2025/
https://github.com/prishasbangera/Virtual-Summer-Art-Gallery-2025

165

https://prishasbangera.github.io/Virtual-Summer-Art-Gallery-2025/
https://github.com/prishasbangera/Virtual-Summer-Art-Gallery-2025

Second, a quick search easily reveals the existence of rectangle packing
algorithms. Instead of manually placing the portraits and artworks, perhaps
there is a way to place all of the artworks automatically. A successful
implementation could open the door for an application in which users can
upload their own images and explore them using the cube gallery.

Final Remarks

I am happy with the way this project turned out, despite the room for
improvement. Overall, the virtual art gallery cube effectively incorporates all
the artwork I created over the summer-with or without reason. In extension,
it includes the memories I made and the people I made them with.

166

167

The Generativity Pattern in Rust
Arhan Chaudhary

ABSTRACT. The generativity pattern in Rust is a combination of typestate [1]
and GhostCell [2], techniques that move what you’d normally check at run-
time to compile-time. This pattern is not commonplace; its usage warrants a
specific set of circumstances. However, it is a hugely important part of
garbage [3] collection [4] utilities and other niche Rust crates. Aside from
thinly spread academic literature?, I haven’t found an accessible analysis of
this pattern online. In order to build up a full picture of the “what” and more
importantly the “why,” we will first spend some time walking through a
realistic example to gauge the type of problem the generativity pattern
solves—statically requiring data to come from or refer to the same source—as
a stronger form of ownership. Then, we will introduce the generativity
pattern and explain how to use it in the latter half of this article. Finally, we
will follow up with a study of Crystal Durham [5]s generativity [6] crate,
a novel improvement to the generativity pattern.

Contents

1. Background 170
1.1. Permutationsooooiiiiiiii 170
1.2. Permutation groupsoeeeuuneiiiineiiiin i, 173

2. The unsafe approach 176

3. The atomicID approach ... 178

4. The generativity approach 181
4.1. The fundamental purposecoooiiiiiiiiiiiiiiiiin., 186
4.2. Why the implementation caveat?ooLL. 189

5. How does generativity work? 191
5.1. min_generativity ... 191

Yes, I will eventually get to them. You just need to keep reading.

168

5.2. The first partoooveiiiiii 192

5.3. The second partuuuiiiiii e 194
5.4. The third partoooiiii e 195
5.5. Verifying soundnesscoooiiiiiiiiiiiiiiiiiii 196
5.6. Language SUPPOTLovruntttr ettt 199
6. Benchmarks 201
7. ConcluSIONooiiiii i 202

169

1. Background

1.1. Permutations

Let us take the role of a crate author about permutations. We want to
investigate the composition [7] of zero-indexed permutations. This can be
expressed nicely visually.

Permutation composition
a=(2, 1, 4, 3, 0
b=(4, 3, 0, 2, 1)

2

=(0 3, 2 4, 1)

The permutation b defines the remapping of the elements from permutation
a. Pretty simple. Notice that permutation composition is only possible under
the following three conditions:

1. a and b must have the same length.
2. Every element from a and b must be non-negative and less than the
length.

3. Every element from a and b must be unique.

Our library is general-purpose, so it is important to handle these error cases.
Here is the simplest way to do that.

/// We provide a “compose into’ function in case the caller already
/// has a permutation preallocated. (This is good practice IMO).
pub fn compose into(a: &[usize], b: &[usize], result: &mut [usize]) ->
Result<(), &'static str> {

if a.len() != b.len() || b.len() != result.len() {

return Err("Permutations must have the same length");

}

let mut seen_b = vec![false; a.len()];

let mut seen_a = vec![false; b.len()];

for (result value, &b value) in result.iter mut().zip(b) {

170

if *seen_b
.get(b_value)
.0k or("B contains an element greater than or equal to the
length")?

return Err("B contains repeated elements");

}

seen b[b value] = true;

let a value = a[b value];

if *seen_a
.get(a_value)
.0k or("A contains an element greater than or equal to the
length")?

return Err("A contains repeated elements");

}

seen_ala value] = true;

*result value = a value;
}
0k(())

Good on you if this made your Rust senses tingle because we shouldn’t have
to validate a and b every time. Rust allows us to enforce at the type level that
they are valid permutations, using the newtype [8] design pattern.

pub struct Permutation(Box<[usize]>);

impl Permutation {
pub fn from mapping(mapping: Vec<usize>) -> Result<Self, &'static str> {
// This function errors if “mapping’ is an invalid
// permutation or its length does not match the second
// argument. The implementation is ommitted.
validate permutation(&mapping, mapping.len())?;
Ok (Self(mapping.into boxed slice()))

pub fn compose into(&self, b: &Self, result: &mut Self) -> Result<(),
&'static str> {
if self.0.len() !'= b.0.len() || b.0.len() !'= result.0.len() {

171

return Err("Permutations must have the same length");
}
for (result value, &b value) in result.0.iter mut().zip(&b.0) {
// SAFETY: “b" is guaranteed to be a valid permutation
// whose elements can index “self"
*result value = unsafe { *self.0.get unchecked(b value) };

}
0k(())
}
pub fn compose(&self, b: &Self) -> Result<Self, &'static str> {
let mut result = Self(vec![0; self.0.len()].into boxed slice());
self.compose into(b, &mut result)?;
Ok(result)

Unsafe is going to be a recurring theme here. You've had your fair
warning.

The newtype pattern is more useful than just for getting around the orphan
rule. We restrict construction of Permutation to
Permutation::from_mapping, which returns an error if the input is not a
valid permutation. That means if we have an instance of Permutation, we
don’t have to worry about its mapping being potentially invalid, reducing
the validation overhead to a length check and permitting unsafe during
permutation composition. Rustaceans describe type-level guarantees like this
by saying an invariant of Permutation is that it represents a valid
permutation. Composing two permutations upholds this invariant, so we
expose Permutation: : compose to create a new Permutation from existing
ones.

This code is a major improvement! It is simple, easy to use, and it provides
reasonable errors. However, a closer examination reveals some problems:

+ Every call to our composition function spends time performing a length
check. Our example is simplistic so it happens to be cheap, but this type of

172

check may require more expensive logic in a practical scenario. Note that
we can’t use const generic lengths because our library operates on
arbitrarily-sized slices at run-time.

« Returning a Result forces the caller to be prepared to handle the error
variant. Library users might be able to guarantee that the length checks
will pass, which would make the error handling more annoying than
helpful.

Yes, these aren’t important problems per se, but they are still inconveniences
to be aware of.

1.2. Permutation groups

We now want to extend our library to model a permutation group [9], a
description of a set of permutations. In a permutation group, every
permutation in the set can be written as a sequence of compositions of a
select few base permutations, which we will use to represent the entire
collection. For example, the manipulations of the Rubik’s Cube form a
permutation group. Its base permutations which represent the entire
permutation group are the six face rotations. By definition, every possible
state on the Rubik’s Cube can be reached from a combination of those face
rotations.

The illustrated turn is a permutation fifty-four elements long, because there

173

are fifty-four stickers on a Rubik’s Cube®.

It follows that if you compose two permutations in a permutation group, the
resulting permutation will also be a permutation in that group. The
reasoning is not so relevant; take this at face value.

A reasonable data structure for permutation groups looks like this:

pub struct PermGroup {
base permutation_length: usize,
base permutations: Vec<Permutation>,

impl PermGroup {
pub fn new(
base permutation length: usize,
base permutation_mappings: Vec<Vec<usize>>,
) -> Result<Self, &'static str> {
for mapping in &base permutation mappings {
validate permutation(mapping, base permutation_length)?;

}
Ok(Self {
base permutation length,
base permutations: base permutation mappings
.into iter()
.map(|mapping| Permutation(mapping.into boxed slice()))
.collect::<Result<Vec<Permutation>, &'static str>>()7?,
1)

pub fn base permutations(&self) -> &[Permutation] {
&self.base permutations

Your inner Ferris awakens. With the annoyances of our last iteration freshly
in memory, you ask yourself: can we perform that length check (the
validate permutation function) during the creation of PermGroup, and
avoid it entirely in Permutation: : compose into? Then, can we tweak our

*The center stickers don’t actually move, and thus can be ignored, so the illustrated turn
is traditionally simplified to a permutation forty-eight elements long.

174

composition function to only operate on permutations from the same
permutation group?

impl Permutation {
// No “from mapping™ method. “Permutation® can only be
// constructed within “PermGroup::new" .

pub fn compose into(&self, b: &Permutation, result: &mut Permutation) {
for 1 in 0..result.0.len() {
// SAFETY: ... ?
unsafe {
*result.0.get unchecked mut(i) =
*self.0.get unchecked(*b.0.get unchecked(i));

pub fn compose(&self, b: &Permutation) -> Permutation {
let mut result = Self(vec![0; self.0.len()].into boxed slice());
self.compose into(b, &mut result);
result

All of a sudden, we’ve opened up an unsafety hole! We implicitly assumed
that the permutations to compose were from the same permutation group.
This is not necessarily true: what if a library user composes two base
permutations from different permutation groups? If the permutation lengths
don’t match, get unchecked will index out of bounds and exhibit undefined
behavior; this is clearly a problem! The intent of this operation is obviously
nonsensical, but it does not change the fact that it is still our responsibility,
as the crate author, that the safe functions we provide can never cause
undefined behavior.

There is a more fundamental reason to care about this unsoundness if left
unchecked. An invariant of permutation composition within the same
permutation group is membership; if the permutations to compose are in the
same permutation group, the resulting permutation is also in that group.
Even if the lengths of permutations from two different permutation groups

175

did match, composing them could produce a permutation outside of either
group, which is a logic error. Other code may even have unsafe blocks that
rely on permutation group membership, for example a Rubik’s Cube solver
optimized for speed.

Mitigating this by checking permutation group membership every function
call is a very expensive operation. This is an example of the “practical
scenario” mentioned beforehand.

We have demonstrated that the newtype pattern alone is not powerful
enough to prevent this logic error. We will analyze different approaches that
ensure our library only permits permutation composition within the same
permutation group. Each has their own trade-offs, but are all right answers
for different situations. They will also lay the groundwork to justify using
the generativity pattern.

All the code segments provided in this article can be found here [10].

2. The unsafe approach
The simplest solution is to mark Permutation: :compose_into and
Permutation::compose unsafe.

/// # Safety
/77
/// “self’, “b*, and "result’ must all be from the same
/// permutation group.
pub unsafe fn compose into(&self, b: &Permutation, result: &mut Permutation) {
for i in 0..result.0.len() {
// SAFETY: permutations within the same group can be
// composed.
unsafe {
*result.0.get unchecked mut(i) =
*self.0.get unchecked(*b.0.get unchecked(i));

Although the extent of the undefined behavior with permutation
composition is just the bounds checking, the goal of this approach is to

176

enforce permutation group membership. Thus, the above safety contract is
made more restrictive to reflect this idea. The usage of unsafe to maintain a
validity invariant is contentious. Permutation composition of the same
length within different permutation groups is a logic error, and it violates the
safety contract, but is not technically unsafe. Sure, you might panic later on
or get some other issue, but this alone will never cause undefined behavior.

To play devil’s advocate, since we only care about composition within the
same permutation group, one may consider producing an invalid value from
this type of permutation composition undefined behavior. With the safety
contract’s additional restriction, calling code no longer has to worry about
handling this logic error, while additionally gaining the contextual benefit of
this assumption. Personally, I believe this use of unsafe is warranted—at the
end of the day, the safety contract does still prevent undefined behavior. I
encourage you to have your own opinion [11].

If you don’t care about using unsafe—and there are valid reasons not to—
then this might be what you want. That said, it’s not always going to be this
simple. What if we introduce a new trait, ComposablePermutation, that
generalizes over different permutation representations? For example, the
PSHUFB instruction can compose two permutations in a single clock cycle if
they have less than sixteen elements.

pub trait ComposablePermutation: Clone {
fn from mapping(mapping: Vec<usize>) -> Result<Self, &'static str>;

/// # Safety

///

/// “self’, b, and “result’ must all be from the same

// permutation group.

unsafe fn compose into(&self, b: &Self, result: &mut Self);

/// # Safety
///
/// “self’ and b must both be from the same permutation
// group.
unsafe fn compose(&self, b: &Self) -> Self {
let mut result = self.clone();

177

// SAFETY: “self’, "b", and “result’ are all from the
// same permutation group.

unsafe { self.compose into(b, &mut result) };

result

}

impl ComposablePermutation for Permutation {
1l ooo
}

The consequences of using unsafe begin to show. Because our generic
Permutation implements ComposablePermutation, and we have shown that
permutation composition from different permutation groups may cause
undefined behavior, Permutation: : compose into must be made unsafe at
the trait level. Rust doesn’t allow us to only make Permutation’s
implementation unsafe. Either all implementers must be made unsafe, or
none at all. In a library about permutation composition, we have now forced
our users to wrangle with unsafe for its most essential operation. Not just
with Permutation: :compose_into, but with all of their own
implementations of ComposablePermutation!

“That is completely unfair!” You might say. “This is a small edge condition I
don’t care about. I'm going to mark this trait method safe anyways.” Well, the
Rust community generally has a zero-tolerance stance on undefined
behavior; the last time someone wanted to mark an unsound method safe, it
didn’t end very well [12].

3. The atomic ID approach

The second approach is to validate our base permutations upfront and use a
private integer to associate them to a unique permutation group. This
simplifies the test for permutation group membership to a cheap integer
comparison. Internalizing how this approach works will be crucial to
understanding the generativity approach. Rereading is encouraged.

178

use std::sync::atomic::{AtomicU64, Ordering::Relaxed};

pub struct PermGroup {
base permutation_length: usize,
base permutations: Vec<Permutation>,
id: u64,

static ID: AtomicU64 = AtomicU64::new(0);

impl PermGroup {
pub fn new(
base permutation length: usize,
base permutation_mappings: Vec<Vec<usize>>,
) -> Result<Self, &'static str> {
for mapping in &base permutation mappings {
validate permutation(mapping, base permutation_length)?;

}
let id = ID.fetch add(1l, Relaxed);
Ok(Self {
base permutation_length,
base permutations: base permutation mappings
.into _iter()
.map(|mapping| Permutation(mapping.into boxed slice(), id))
.collect(),
id,
1

pub fn base permutations(&self) -> &[Permutation] {
&self.base permutations

The implementation of PermGroup does not actually change much. As before,
we check that all mappings from base_permutation_mappings are valid
permutations of the same length before creating a new PermGroup. This time,
we utilize a global AtomicU64 to uniquely identify the permutations in a
permutation group, passing it as an integer to Permutation. The integer is
guaranteed to be unique for Permutations among different PermGroups
because we increment the identifier every call to PermGroup: : new.

179

pub struct Permutation(Box<[usize]>, u64);

impl Permutation {

pub fn from mapping and group(
mapping: Vec<usize>,
group: &PermGroup,

) -> Result<Self, &'static str> {
validate permutation(&mapping, group.base permutation length)?;
let permutation = Self(mapping.into boxed slice(), group.id);
validate permutation group membership(&permutation,
&group.base permutations)?;
Ok (permutation)

pub fn compose into(&self, b: &Self, result: &mut Self) -> Result<(),
&'static str> {
if self.1 !'= b.1 || b.1 != result.l {
return Err("Permutations must come from the same permutation
group");
}
for i in 0..result.0.len() {
// SAFETY: “self’, "b", and "result’ have the same ID.
// Therefore, they are members of the same group and
// can be composed.
unsafe {
*result.0.get unchecked mut(i) =
*self.0.get unchecked(*b.0.get unchecked(i));

}
Ok(())

pub fn compose(&self, b: &Self) -> Result<Self, &'static str> {
let mut result = Self(vec![0; self.0.len()].into boxed slice(),
self.1);
self.compose into(b, &mut result)?;
Ok(result)

Creating a new Permutation now requires a mapping and a PermGroup
reference. Once the mapping is verified as both a valid permutation and a
member of that permutation group, only then is a new Permutation created

180

with that PermGroup’s identifier, as a “token” of its membership. We can no
longer create Permutations willy-nilly from just a mapping because that
would offer no guarantees about the uniqueness of its identifier.

The fruits of our labor are rewarded in Permutation:: compose into. The
expensive permutation group membership test is performed exclusively
during Permutation’s creation. When two permutations are composed, those
same “tokens” are used to cheaply verify membership within the same
permutation group. Hence, callers can safely assume permutation
composition produces another permutation in the same permutation group
without compromising efficiency.

This solution is likely to be considered good enough in industry—most
practitioners would need a good reason to care more about this problem.
However, if your interest is piqued, what would really be nice is an infallible
yet zero-cost permutation composition operation—one that is guaranteed to
be valid at compile-time and as fast as the unsafe approach. If you’re willing
to go a small step farther, we arrive at...

4. The generativity approach

The big reveal: the generativity approach is equivalent to the atomic ID
approach, except everything is done at compile-time. Generativity solves the
fundamental problem thus far: the invariant of Permutation guarantees it is
a valid permutation, but not that it is necessarily associated with a specific
PermGroup.

Existing literature achieves generativity by sacrificing ergonomics and
readability. They require wrapping all code in (often deeply nested) closures,
warding off much of their interest in practice. We will spend the rest of this
article examining Crystal Durham [5]‘s generativity [6] crate, which
utilizes a novel and highly experimental technique to achieve generativity
without needing a closure. Later, we will show that the generativity crate
is a zero-cost compile-time abstraction.

(Subtle-but-no-so-subtle foreshadowing: we will explore my own improvement
to this technique in the next section)

181

use generativity::{Guard, Id, make guard}

fn main() {
// Create a variable ‘guard’ of type ‘Guard<' >"
make guard!(guard);
// Consume that “guard® into an "Id<' >°
let id: Id<' > = guard.into();

generativity publicizes three things: Guard, Id, and make_guard. Invoking
the make_guard macro creates a Guard<'_> with a let binding, an identifier
that carries a guaranteed unique lifetime. This lifetime is not actually used as
a lifetime in the usual sense. It exists solely to make each instance of
Guard<'_> a unique type. This is not voluntary nor merely a suggestion; the
following does not compile because make_guard’s lifetime uniqueness

guarantee cannot be broken®.

fn unify lifetimes<'a>(a: &Guard<'a>, b: &Guard<'a>) {}

make guard!(a);

make guard!(b);

// rejected: unique lifetimes cannot be unified (this
// is not the actual compiler error message)

unify lifetimes(&a, &b);

Id<' > islike Guard<' > except that it implements Copy and Clone while the
latter does not. So, to create distributable copies of this identifier, you must
consume a Guard<'_> into an Id<'_> using its From implementation. This is

all that generativity exports.

*This lifetime is not technically unique. You could unify it with another lifetime in a
similar function call: fn unify lifetimes<'id>(impostor: &'id (), guard:
&Guard<'id>) { ... }.The lifetime is only unique among the provided Id<'id> and
Guard<'id> types, so as long as your code only trusts lifetimes carried by those types it
will be sound.

182

With the generativity pattern in place, the body of PermGroup: : new remains
sound because it creates Permutations with the same lifetime identifier,

making it unique among different PermGroups.

pub
pub

pub

struct PermGroup {

struct PermGroup<'id> {

base permutation_length: usize,

base permutations: Vec<Permutation>,
id: u64,

id: Id<'id>

fn new(

base permutation_length: usize,

base permutation _mappings: Vec<Vec<usize>>,
guard: Guard<'id>,

) -> Result<Self, &'static str> {

for mapping in &base permutation mappings {
validate permutation(mapping, base permutation_length)?;
}
let id = ID.fetch add(1l, Relaxed);
let id = guard.into();
Ok(Self {
base permutation_length,
base permutations: base permutation mappings
.into_iter()
.map(|mapping| Permutation(mapping.into boxed slice(), id))
.collect(),
id,
1)

Why is guard passed as an argument, and why isn’t make_guard creating it
within the function body? This reveals generativity’s implementation
caveat: a Guard<'id> can never escape the scope it was defined in. Think of

creating a Guard<'id> as creating a reference to a local variable. No matter

what, it is only valid inside of its enclosing scope.

So, instantiating two different permutation groups, for example, looks like

this:

183

make guard! (guardl);
make guard! (guard2);

let first = PermGroup::new(..., guardl);
let second = PermGroup::new(..., guard2);
// rejected: "guardl’ used after move

// let third = PermGroup::new(..., guardl);

The purpose of Guard<'id> when Id<'id> already exists becomes clear
when considering that third is rejected by the compiler. If PermGroup: : new
accepted an Id<'id>, two different permutation groups could be assigned
the same Id<'id> because it implements Copy.

Okay, this is all fine and dandy, but how does this help improve permutation
composition?

pub struct Permutation(Box<[usize]>, u64);
pub struct Permutation<'id>(Box<[usize]>, Id<'id>);

Recall that every Id<'id> carries a unique lifetime among different
PermGroup<'id>s. By combining Permutation with Id<'id> and a lifetime
parameter, we create a collection Permutation<'id>s whose types are the
same within a PermGroup<'id> but distinct from permutations within other
PermGroups<'id2>s. Our permutation composition function takes in the
same type Self for all arguments—it follows that Permutation<'id>s from
different permutation groups cannot be composed as they are not the same
type, and Permutation<'id>s from the same permutation group can be
composed as they are the same type. This is the essence of the generativity
pattern, enforced at compile-time.

Behold: a permutation composition function that is unchecked, infallible,
and safe. The full implementation is here [13].

pub fn compose into(&self, b: &Self, result: &mut Self) -> Result<(),
&'static str> {
if self.1 !'= b.1 || b.1 != result.l {
return Err("Permutations must come from the same permutation group");

184

}
pub fn compose into(&self, b: &Self, result: &mut Self) {
for i in 0..result.0.len() {
// SAFETY: “self', “b’, and ‘result’ are members of the
// same group and can be composed.
unsafe {
*result.0.get unchecked mut(i) =
*self.0.get unchecked(*b.0.get unchecked(i));
}
}
0k(())

Let us informally prove generativity’s equivalence to the atomic ID
approach:

In the atomic ID approach, unique integer identifiers are created a la
ID.fetch_add(1l, Relaxed). This directly parallels make guard!(guard),
which creates a unique Guard<'id> identifier.

The unique integer identifier is then stored inside a primitive u64. This
implements Copy and it is distributed among the input base permutations
to associate each one with its permutation group. Similarly, Id<'id>
serves this purpose.

The unique integer identifier is used to test permutation group
membership during permutation composition, erroring if not the case. The
generativity pattern directly embeds the same test into the type system.

It would be irresponsible for me to advertise the generativity crate asa

perfect solution barring its implementation caveat. Yes, the implementation

caveat is its only functional limitation, but there are some developer

experience problems to consider.

Although there’s only a single line marked unsafe in our
Permutation<'id> example, its soundness is now much harder to justify. It
is on the developer to prove that 'id uniquely associates permutations to
their permutation group; any mishandling could easily make the whole
thing unsound (i.e. if PermGroup: : new took an Id<'id> instead of a
Guard<'id>).

185

« The 'id lifetime, like all other lifetimes, is pervasive. Data structures that
wish to store Guard<'id> or Id<'id>, or any other data structure that
stores Guard<'id> or Id<'id>, must have a lifetime annotation. But
make_guard is typically invoked at the outermost scope, and will likely
have to be passed through many types, so the number of lifetime
annotations is amplified.

« Some APIs require types to satisfy 'static. For example, the closure
passed to thread: : spawn must satisfy 'static, making it impossible to
return a Permutation<'id>. The workaround is usually an inconvenient
band-aid; in this case the standard library offers thread: : scope to borrow
non-'static data in a thread.

« The compiler errors [14] from misusing generativity don’t provide the
location of the error. They are generally confusing, even when you know
how generativity internally works.

The atomic ID approach shares only the first problem. Given your use case,
it might be what you want.

4.1. The fundamental purpose

Notice how different instances of Permutation<'id> masquerade as separate
types even though they have the same underlying data representation. In
Rust, 'id is known as a branded lifetime, or more generally, a type brand. The
first principles of type branding date back at least to the work of John
Launchbury and Simon Peyton Jones on the ST monad in Haskell [15]
(section 2.5.2) in 1995. Aria Desires’ master’s thesis [16] (section 6.3) brought
this into the context of Rust in 2015, coining lifetime branding in Rust with
the term “generativity.” The more recent GhostCell paper [2] by Joshua
Yanovski and others utilized generativity to present interior mutability as a
zero-cost abstraction in 2021.

This segues into an important point. The fundamental purpose of the
generativity pattern is not necessarily to improve performance, but to
statically require that individual values come from or refer to the same
source. The performance benefits are a symptom of this requirement. I like
to informally think of it as a stronger form of ownership.

186

For an alternative perspective, Aria Desires’ master’s thesis explores this
idea with a concept called a BrandedVec. When the ith element of an
ordinary vector vec is accessed through &vec[i], a run-time check is
performed to see if i is in bounds. If not, then the program will panic.
However, in many situations we know that the indices are always in bounds;
one such case regards the append-only vector, the BrandedVec. All elements
pushed to this type of vector are forever valid. Leveraging this fact, the push
operation returns the index of the pushed element so it can later be used to
soundly perform unchecked indexing.

If we wanted to mark the unchecked indexing operation safe, this returned
index can’t be an ordinary usize. Bad actors may provide their own usize
instead of one returned from the push operation. This returned index can’t
be a newtyped usize either. The problem with this is a microcosm of the
problem with our initial Permutation example: different indices from
different append-only vectors may be used to unsoundly index one another.
To make our accesses safe, the solution is to lifetime brand the returned
indices to statically associate them with vec—the generativity pattern.

As hinted to beforehand, generativity has traditionally only been achieved
through the use of a closure. The GhostCell paper includes this following
example, taken from its inspired adaption [17] of BrandedVec.

let vecl: Vec<u8> = vec![10, 11]
let vec2: Vec<u8> = vec![20, 21]

BrandedVec: :new(vecl, move |mut bvecl: BrandedVec<u8>| {

bvecl.push(12);

let il = bvecl.push(13);

let idx = bvecl.get index(0).unwrap();

BrandedVec: :new(vec2, move |mut bvec2: BrandedVec<u8>| {
let i2 = bvec2.push(22);
println!("{:?}", bvec2.get(i2)); // No bound check! Prints 22
*bvec2.get mut(i2) -= 1; // No bound check!
printin!("{:?}", bvec2.get(i2)); // Prints 21
println!("{:?}", bvecl.get(il)); // Prints 13
// rejected: il is not an index of bvec2
// println!("{:?}", bvec2.get(il));

187

1}
1)

Each BrandedVec created from a Vec receives its own lifetime brand within
each closure®. In terms of ergonomics, it’s not exactly your Friendly
Neighborhood Spider-Man.

But through the generativity crate, we eliminate the rightward drift,
changing just nine lines [20] of BrandedVec’s implementation. The API now
appears less foreign and more Rust-like.

let vecl: Vec<u8> = vec![10, 11];
let vec2: Vec<u8> = vec![20, 211;

make guard! (guardl);

let mut bvecl = BrandedVec::new(vecl, guardl);
bvecl.push(12)

let il = bvecl.push(13);

let _idx = bvecl.get index(0).unwrap();

make guard! (quard2);

let mut bvec2 = BrandedVec::new(vec2, guard2);

let i2 = bvec2.push(22);

println!("{:?}", bvec2.get(i2)); // No bound check! Prints 22
*bvec2.get mut(i2) -= 1; // No bound check!
println!("{:?}", bvec2.get(i2)); // Prints 21
println!("{:?}", bvecl.get(il)); // Prints 13

// rejected: il is not an index of bvec2

*Rust doesn’t have rank-2 polymorphism [18], so we need to replicate it using a closure
with a Higher-Rank Trait Bound [19]. The type signature of the closure passed to
BrandedVec: :newis inner: impl for<'id> FnOnce(BrandedVec<'id, T>) -> R, and
this just means every call to inner must be prepared to handle an argument with any
possible lifetime. Within a single function the compiler has perfect information, but
calling inner inside BrandedVec: :new tricks the borrow checker. Since it doesn’t (and will
likely never) do interprocedural analysis, it conservatively sees every call to inner as
producing an opaque lifetime that can’t be unified with any other. To avoid any relation
with an existing lifetime, a fresh new lifetime is statically generated for every call to
BrandedVec: : new, our lifetime brand for BrandedVec<'id, T>. This is just a brief
overview of a well-investigated topic. Repeating for convenience, further reading is
encouraged here [16] (section 6.3) and here [2] (section 2.2.1).

188

// println!("{:?}", bvec2.get(il)

Our digression in bringing up this comparison has an ulterior motive. The
original closure technique bears the exact same implementation caveat with
generativity: nothing declared inside of the closure can escape it.
make_guard effectively does the same thing as wrapping the rest of the
function in an immediately invoked closure, and is no less capable than the
closure technique.

4.2. Why the implementation caveat?

Let us offer another perspective as to why Guard<'id> cannot escape its
defining scope. StackOverflow user rodrigo [21] points out [22] that you can
achieve something similar to generativity using an anonymous unit struct
and a macro to create the permutation group. Successive calls to this macro
create permutation groups branded by this newly generated unit struct. In
the context of our Permutation example, example usage looks like this. The
full implementation is here [23].

#[macro_export]
macro rules! new perm group {
($len:expr, $mappings:expr) => {{

let len = $len;

let mappings = $mappings;

struct InvariantToken;

// SAFETY: private API, only used in this macro.

unsafe {

$crate::PermGroup: :<InvariantToken>::new(len, mappings)

1

let first_perm_group = new perm group! (4, vec![vec![1l, 2, 0, 3]]).unwrap();
let second perm_group = new perm group!(3, vec![vec![2, 0, 1]]).unwrap();
let first_perm = &first_perm_group.base permutations()[0];

let second_perm = &second_perm_group.base permutations()[0];

189

// rejected: “first perm’ and “second perm’ are not the same type
// first perm.compose(second perm);

The flaw is quite subtle. The macro constructor creates a token per-call-site
instead of per-owner. Every expression results in a particular type; if the
same macro is run more than once, it will produce the same type, even if it is
unique to the expression. This can be exploited to give multiple owners the
same brand. To exemplify:

let first = (4, vec![vec![1, 2, 0, 3]1);
let second = (3, vec![vec![2, 0, 1]]);

let mut perm groups = vec![];
for (len, mappings) in [first, second] {
// I expanded the macro to make it easier to understand!
// perm _groups.push(new perm group!(len, mappings).unwrap());

perm_groups.push ({
let len = len;
let mappings = mappings;
struct InvariantToken;
// SAFETY: private API, only used in this macro.
unsafe {
crate::PermGroup: :<InvariantToken>::new(len, mappings)
}
}.unwrap());
}
let first perm = &perm _groups[0].base permutations()[0];
let second perm = &perm _groups[1l].base permutations()[0];

// not rejected, UB!
first perm.compose(second perm);

We have just invoked undefined behavior from safe user-facing code. This is
unsound without question, and there is no point in endorsing this approach.

There is a remedy: combine InvariantToken with a locally-scoped lifetime,
as illustrated [24] in binarycat [25]'s crate typetoken [26]. This only creates
a strictly less capable version of generativity. There is no point in
endorsing this approach either.

190

If the above code were possible with generativity, 'id could escape the
scope and assign all elements of the vector the same lifetime brand. We
would have the exact same unsoundness problem, thus we cannot use a loop
to create a dynamic number of PermGroup<'id>s.

5. How does generativity work?

At this point a good part of my readers are itching to know what makes the
generativity crate so magical compared to the age-old closure technique.
The suspense is probably killing you. Or more likely putting you to sleep.
We will introduce the inner workings of generativity top-down. I will first
present my own minimal rewrite of the generativity crate, called
min_generativity. Then, we will comprehensively walk through how each
part of it works.

5.1. min_generativity

use std::marker::PhantomData;
pub type Id<'id> = PhantomData<fn(&'id ()) -> &'id ()>;
pub struct Guard<'id>(pub Id<'id>);

impl<'id> From<Guard<'id>> for Id<'id> {
fn from(guard: Guard<'id>) -> Self {
guard.0
}
}

pub struct LifetimeBrand<'id>(PhantomData<&'id Id<'id>>);

impl<'id> LifetimeBrand<'id> {
pub fn new(: &'id Id<'id>) -> Self {
LifetimeBrand(PhantomData)
}
}

impl<'id> Drop for LifetimeBrand<'id> {
fn drop(&mut self) {}
}

191

#[macro_export]
macro rules! make guard {
($name:ident) => {
let branded_place: $crate::Id = std::marker::PhantomData;
let lifetime brand = $crate::LifetimeBrand::new(&branded place);
let $name = $crate::Guard(branded place);
I}

Before we get started, let’s get some low hanging fruit out of the way. We
can verify that min_generativity is zero-cost: every single type is some
form of PhantomData, a zero-sized type that is optimized away at compile-
time. However, there is a sharp corner: we create a reference to a
PhantomData in make_guard, and references to zero-sized types are perhaps
surprisingly not zero-sized [27] due to some idiosyncrasies. Thus, we cannot
prove min generativity is zero-cost as Rust lacks a specification for
optimization behavior. I claim that in practice this is the case the
overwhelming majority of the time. The reference: is never used anywhere,
is associated with an unused variable (lifetime brand), and has no Drop
impl. Even at the most basic optimization level, rustc is smart enough to no-
op everything [28].

Note that min_generativity benevolently assumes that library users will
only use make_guard to construct Id<'id>and Guard<'id>, as both are
public types with public field visibility. The actual generativity crate
privatizes Id<'id> (via a newtype) and Guard<'id> and marks their
constructors unsafe, hidden within make guard. Such was omitted to be
concise.

5.2. The first part

use std::marker::PhantomData;

pub type Id<'id> = PhantomData<fn(&'id ()) -> &'id ()>;

If you’ve only used PhantomData when the compiler has told you to, this
certainly looks nonsensical. The purpose of Id<'id> as we saw earlier is to

192

carry a unique lifetime brand among different PermGroup<'id>s, but aren’t
lifetimes already unique? What’s the deal?

In Rust, variance determines whether you can substitute one lifetime for
another. If you have a longer lifetime, Rust lets you use it where a shorter
one is expected. This is also known as subtyping. Normally this is good—
subtyping introduces static analysis that allows for more programs to
compile—but in our case this automatic substitution works against our favor.
If an Id<'id> can be tied to a lifetime other than its lifetime brand, we lose.
So, the unique lifetime 'id must have no subtyping relation with other
lifetimes; 'id is what’s called an invariant lifetime.

The contemporary usage of the word “invariant” by Rustaceans has two
meanings: one as a type-level guarantee (a noun), and one as a no-subtyping
relation (an adjective). Invariant generally means something that cannot
change or must be fixed to a specific value. Both meanings refer to this same
general concept. We've been working with the first meaning so far, but for
the rest of this article we’ll switch to the second one.

To make 'id invariant, we take advantage of a fundamental constraint with
function pointer types. When you have fn(&'id T) -> &'id T, the caller
provides a reference with lifetime 'id and expects to get back a reference
with that same lifetime ' id. If Rust allowed the function pointer type to
accept a longer lifetime but return a shorter one, or vice versa, it would
break this explicit contract. You might pass in a reference that lives for ten
seconds but get one back that lives for five seconds, creating a dangling
pointer. Function pointer types with the same lifetime in the input and
output positions force that lifetime to be invariant. No substitution allowed.

Of course, we don’t actually want to store a function pointer at run-time. We
only utilize it to make 'id invariant at compile-time. The language provides
PhantomData to enable fine-grained control over variance. In this case it tells
the compiler to pretend like it holds a function pointer while not actually
taking up any space.

193

Throughout the years lifetime invariance has been achieved in several
other ways.

pub type Id<'id> = PhantomData<&'id mut &'id ()>; // Rust standard
library

pub type Id<'id> = PhantomData<*mut &'id ()>; // GhostCell paper

pub type Id<'id> = PhantomData<Cell<&'id u8>>; // Aria Desires' master's
thesis

pub type Id<'id> = PhantomData<Cell<&'id mut ()>>; // Also from her
master's thesis

They work because they follow the core principal that &mut T is
invariant over T (click here [29] to see why). With T = &'id (), 'id
must become invariant. Unlike the others, PhantomData<fn(T) -> T>
implements all auto traits (Send, Sync, etc) for its owner, and it is
generally preferred to convey that the only purpose is to indicate
invariance. For further reading, the Rustonomicon provides a table
[30] of common PhantomData patterns.

When I first learned how to use PhantomData to indicate variance I couldn’t
help but think of it as an obnoxiously leaky abstraction. There is a
movement [31] to make it a bit more ergonomic by introducing custom
variance newtypes into the standard library, i.e. PhantomInvariantLifetime.
Sure enough, the status quo of PhantomData has been considered “something
of a failure [32]”

5.3. The second part

pub struct Guard<'id>(pub Id<'id>);

impl<'id> From<Guard<'id>> for Id<'id> {
fn from(quard: Guard<'id>) -> Self {
guard.o
}

194

The entire implementation of Guard<'id> is a newtype around Id<'id>. The
established difference being that Guard<'id> doesn’t implement Copy or
Clone. We provide a From implementation to consume a Guard<'id> into an
Id<'id> to create distributable copies of the lifetime brand, as we saw
earlier.

5.4. The third part

pub struct LifetimeBrand<'id>(PhantomData<&'id Id<'id>>);

impl<'id> LifetimeBrand<'id> {
pub fn new(: &'id Id<'id>) -> Self {
LifetimeBrand(PhantomData)

impl<'id> Drop for LifetimeBrand<'id> {
fn drop(&mut self) {}

#[macro_export]
macro rules! make guard {
($name:ident) => {
let branded place: $crate::Id = std::marker::PhantomData;
let lifetime_brand = $crate::LifetimeBrand::new(&branded_place);
let $name = $crate::Guard(branded place);
i

It turns out that disabling lifetime subtyping is not enough. While Rust
believes it’s unsound to freely resize 'id, there’s nothing that constrains
where 'id should come from. Consider the following system:

fn unify lifetimes<'id>(: &Id<'id>, : &Id<'id>) {}
let idl: Id<'idl> = PhantomData;

let id2: Id<'id2> = PhantomData;
unify lifetimes(&idl, &id2);

195

The constraint solver realizes there is no logical contradiction with the
obvious solution of 'id2 = 'idl, and it allows this program to compile. We
need to uniquely tie 'id1 and 'id2 to their respective declaration sites to
prevent Rust from unifying them.

After make_guard creates branded place and generates an invariant lifetime
'id, we are now armed with the knowledge required to examine how
LifetimeBrand ensures it is non-unifiable. It takes the approach of
establishing distinct lower and upper bounds for 'id, highlighting the need
for a macro with protected hygiene to prevent these bounds from potentially
being manipulated.

Notice that LifetimeBrand carries the phantom type &'id Id<'id> (to avoid
actually storing the reference). The existence of LifetimeBrand’s Drop impl
means this borrowed data could potentially be used at the end of the scope,
delegating special analysis called the drop check [33]. The drop check forces
the compiler to extend 'id to live at the point where lifetime brand is
dropped, constituting our lower bound. The actual Drop impl is purposefully
left blank.

An important guarantee from the compiler is that local variables in a scope
are dropped in the opposite order they are defined. Now we must prevent
successive make_guard invocations in the same scope from unifying with the
first invocation whose lifetime lives the longest. We are left with a need to
upper-bound ' id, and this is done by tying 'id to the borrow of what created
it. So, any expansion of 'id would mean branded_place’s borrow of lifetime
'id wouldn’t live long enough when it is dropped.

If you still find it confusing, I encourage you to work out rustc’s error
message in this example [34]. I also encourage you to play around with this
code snippet to see what compiles and what doesn’t. I've found this exercise
illuminating. Another tip to help you understand is to remember the pithy
saying that lifetimes are descriptive, not prescriptive.

5.5. Verifying soundness

It is easy to verify that generativity is sound.

196

make guard!(idl);

make guard!(id2);

assert eq!(idl, idl);

assert eq!(id2, id2);

// rejected: “branded place® does not live long enough
// assert eq!(idl, id2);

At the time of writing, this test case passes. However, generativity’s vice is
that it relies on internal behavior from the drop check analysis, the precise
rules of which have historically been ill-defined and subject to change. In
theory, sufficiently advanced analysis would be able to see that dropping
lifetime_brand doesn’t require 'id to live because its Drop impl is empty,
destroying the uniqueness guarantee we have created.

The full extent of the current drop check analysis is detailed in a t-
types meeting document [35]. TL;DR [33].

Pertaining to our concerns, any weakening of the drop check forcing
captured lifetimes to live will most likely be opt-in, based on the direction of
the “drop check eyepatch” RFC [36]. It introduces the unsafe #[may_dangle]
attribute which relaxes this requirement. #[may_dangle] opts-in a struct’s
Drop impl to say, “I don’t access a generic parameter, so it can be dropped
before I run” Drop check eyepatch was introduced as a hacky refinement
over “unguarded escape hatch [37],” which permitted high-priority
collections like Vec<&T> to drop despite the &T borrow being invalidated
beforehand.

Dropck Eyepatch RFC.

Merged
§= Merg pnkfelix merged 9 com t-lan : kfel ck-eyep: B on Jul 11, 2016

[§ Ericson2314 commented on Jun 24, 2016 Contributor) ***

This is still supposed to be a temporary fix, right?

@

197

Here are some famous last words. Drop check eyepatch was accepted nine
years ago, yet stabilization is still opposed [38]. There are too many subtle
gotchas with respect to the drop check that have been found to be too much
of a footgun even for an internal compiler feature. It has resulted in
unsoundness multiple [39] times [40]. The stable analysis is deliberately
conservative for this reason. To quote from the Rustonomicon’s explanation
[41] of #[may _dangle], “it is better to avoid adding the attribute.”

The existing avenue of improvement [42] clarifies the semantics but still
holds that this behavior will be opt-in. Hence, we can strengthen our
confidence that the livelihood requirements for generativity will remain
sound.

There are two other soundness concerns that are unlikely to be problematic
but are still brought up in brief:

» generativity relies on an unused variable, lifetime brand, to impact
borrow checking and the drop check. If support for unused variable
analysis is ever removed, then scopeguard [43], a crate with hundreds of
millions of downloads, would break, and Rust is very careful not to break
existing code. scopeguard also relies [44] on the Drop impl of an unused
variable. Additionally, with the drop check, borrow checking must also run
by virtue of lifetime_brand’s Drop impl, which could possibly access the
borrow®.

« In the ultra rare case where generativity is used in a divergent function,
the drop checker will realize that Drop never runs and skip the drop check
entirely. Special care [46] is required in this case to uphold soundness.

« It may still be hard to trust the delicate configuration of upper and lower
bounding the generated lifetime. With non-lexical lifetimes [47] stabilized
in 2022 as the second edition of the borrow checker, the only planned next
iteration is Polonius [48], the implementation of which currently passes
[49] the aforementioned test case. I haven’t given it much thought, but

*Unreachable code on the other hand is not borrow checked because it simply wasn’t a
priority [45].

198

proving generativity’s soundness with Polonius’ formal model of the
borrow checker would be a fun project (to me at least).

5.6. Language support

We can no longer ignore the elephant in the room with the make guard
macro: it looks ugly. It injects local variables into the current scope, and we
saw this was necessary in the statement-position to prevent the lifetime
bounding tricks from being manipulated. For a while there was no
resolution, until just a few months ago when the experimental super let
[50] feature was introduced to extend the lifetimes of block-scoped variables.
By creating a block scope, expression-position make_guard is made possible
on nightly Rust.

#![feature(super let)]
I aoc

#[macro_export]
macro_rules! make guard {
($name:ident) => {
let branded place: $crate::Id = std::marker::PhantomData;
let lifetime brand = $crate::LifetimeBrand::new(&branded place);
let $name = $crate::Guard(branded place);

15

0 = {{
super let branded place: $crate::Id = std::marker::PhantomData;
super let lifetime brand = $crate::LifetimeBrand: :new(&branded place);
$crate::Guard(branded place)

1

}

fn main() {
make guard! (guard);
let guard = make guard!();

Furthermore, there are preliminary ideas [51] that would allow make guard
to be a function instead of a macro. The feedback for super let has so far

199

been positive, so once the semantics are ironed out I think efforts to stabilize
this feature will be underway.

My last contribution to this discussion is some wishful thinking about first-
class language support for generativity. The troubles with unique lifetime
branding stem from the fact that Rust offers no way to prevent lifetimes
from unifying. So, I propose the #[nonunifiable] lifetime attribute. It would
allow lifetimes to declaratively guarantee non-unifiability without having to
resort to generativity’s lifetime bounding tricks. #[nonunifiable] is not
intended to indicate variance—that’s the job of PhantomData. For the
permutation example, first-class language support from the compiler would
look like this. The full implementation is here [52].

pub struct PermGroup<#[nonunifiable] 'id> {
base permutation length: usize,
base permutations: Vec<Permutation<'id>>,
id: PhantomData<fn(&'id ()) -> &'id ()>

pub struct Permutation<'id>(Box<[usize]>, PhantomData<fn(&'id ()) -> &'id

()>);

First-class language support is also the perfect excuse to improve the
confusing [53] compiler errors:

let first = PermGroup::new(4, vec![vec![1, 2, 0, 31]).unwrap();
let second = PermGroup::new(3, vec![vec![2, 0, 1]]).unwrap();
let first perm = &first.base permutations()[0];

let second perm = &second.base permutations()[0];

first perm.compose(second _perm);

error[E0308]: mismatched types
--> src/main.rs:9:23
|
6 | let first_perm = &first.base permutations()[0];
[binding “first perm’ declared here with nonunifiable
lifetime "'1°

200

7 | let second perm = &second.base permutations()[0];
| e binding ‘second perm’ declared here with nonunifiable
lifetime " ’'2°

8 |

9 | first_perm.compose(second perm);
| Aannannnnn expected “Permutation<'l>", found a
different “Permutation<'2>"

| |
| arguments to this method are incorrect
|
= note: expected reference “&Permutation<'l>"

found reference ‘&Permutation<'2>"
= note: “Permtuation<'l>" and "Permutation<'2>" look like similar types, but
are distinct because they carry “#[nonunifiable]® lifetimes

Jack (one of this article’s peer reviewers) and I discussed what first-class
language support to remove the lifetime parameter and allow Guard to
escape its scope could look like. Unfortunately, we came to the conclusion
that such a system would be equivalent to the problem case described in
Section 4.2. Creating an arbitrary number of branded types in a loop during
run-time would require deep changes to the type system.

Maybe #[nonunifiable] will have an unexpected use case that would make
it practical, or maybe not. I'm not going to pretend like I've figured out all of
the semantics. The point is to get my thoughts up in the air.

6. Benchmarks

No comparison would be complete without a benchmark. Yes, the point of
the generativity pattern is more fundamental than just speed, but I know
what people want. [statically generated two random length-fifteen
permutations and wrote a Criterion benchmark for all five approaches to
permutation composition.

Benchmark Name Time (ns)
1-slice 14.805
2-newtype 4.257

201

4-atomic_id 3.940
5-generativity 3.604
3-unsafe_trait 3.602

Empirically, this validates all of my observations. The naive 1-slice is the
slowest because it checks every permutation for complete validity during
composition. 2-newtype removes most of the validation overhead.
Admittedly this is good enough; again, from a practical standpoint, you
would only care about the other solutions if you could prove that
permutation composition was the bottleneck. 4-atomic_id replaces the
validation with a single integer comparison, making it marginally faster,
likely because it avoids dereferencing. Finally, 5-generativity and 3-
unsafe_trait emerge the fastest because they avoid validation entirely, and
I have also verified that the generated machine code is identical. The
important difference: 3-unsafe_trait marks permutation composition
unsafe while 5-generativity does not.

7. Conclusion
Truthfully I don’t have many final thoughts. I just needed a transition to end
this article. I suppose my primary conclusion is that this article has gotten

farlonger than I had originally planned & .

I don’t think this is a bad thing; its comprehensiveness more than makes up
for it. The hidden agenda was to survey design patterns and write about Rust
code I thought were interesting, culminating with the generativity pattern,
which shows us how to take advantage of the type checker’s power in a
non-obvious manner.

This concludes my SIGHORSE submission! I came into this topic with
surface level understandings of what generativity, PhantomData, and the
drop check are and how they work. I was not expecting this to take five
weeks of meticulous research and writing. I was entirely unprepared for how
interesting the full story would be.

202

8. References

[Online]. Available: https://cliffle.com/blog/rust-typestate/
[Online]. Available: https://plv.mpi-sws.org/rustbelt/ghostcell/

[Online]. Available: https://github.com/kyren/gc-arena/?tab=readme-
ov-file#prior-art

Online]. Available: https://github.com/Manishearth/rust-gc

[

[Online]. Available: https://cad97.com/

[Online]. Available: https://crates.io/crates/generativity
[

Online]. Available: https://en.wikipedia.org/wiki/Permutation_group#
Composition_of_permutations%E2%80%93the_group_product

[Online]. Available: https://rust-unofficial.github.io/patterns/patterns/
behavioural/newtype.html

[Online]. Available: https://en.wikipedia.org/wiki/Permutation_group

[Online]. Available: https://github.com/ArhanChaudhary/generativity-
pattern-rs

[Online]. Available: https://users.rust-lang.org/t/should-i-use-unsafe-
merely-to-encourage-users-to-maintain-invariants/27856

[Online]. Available: https://github.com/ogxd/gxhash/issues/82#
issuecomment-2257578785

[Online]. Available: https://github.com/ArhanChaudhary/generativity-
pattern-rs/blob/main/src/5-generativity.rs

[Online]. Available: https://play.rust-lang.org/?version=stable&mode=
debug&edition=2024&gist=4675f6eb33925940c51668ee15a00010

[Online]. Available: https://doi.org/10.1007/BF01018827

[Online]. Available: https://github.com/Gankra/thesis/blob/master/
thesis.pdf

203

https://cliffle.com/blog/rust-typestate/
https://plv.mpi-sws.org/rustbelt/ghostcell/
https://github.com/kyren/gc-arena/?tab=readme-ov-file#prior-art
https://github.com/kyren/gc-arena/?tab=readme-ov-file#prior-art
https://github.com/Manishearth/rust-gc
https://cad97.com/
https://crates.io/crates/generativity
https://en.wikipedia.org/wiki/Permutation_group#Composition_of_permutations%E2%80%93the_group_product
https://en.wikipedia.org/wiki/Permutation_group#Composition_of_permutations%E2%80%93the_group_product
https://rust-unofficial.github.io/patterns/patterns/behavioural/newtype.html
https://rust-unofficial.github.io/patterns/patterns/behavioural/newtype.html
https://en.wikipedia.org/wiki/Permutation_group
https://github.com/ArhanChaudhary/generativity-pattern-rs
https://github.com/ArhanChaudhary/generativity-pattern-rs
https://users.rust-lang.org/t/should-i-use-unsafe-merely-to-encourage-users-to-maintain-invariants/27856
https://users.rust-lang.org/t/should-i-use-unsafe-merely-to-encourage-users-to-maintain-invariants/27856
https://github.com/ogxd/gxhash/issues/82#issuecomment-2257578785
https://github.com/ogxd/gxhash/issues/82#issuecomment-2257578785
https://github.com/ArhanChaudhary/generativity-pattern-rs/blob/main/src/5-generativity.rs
https://github.com/ArhanChaudhary/generativity-pattern-rs/blob/main/src/5-generativity.rs
https://play.rust-lang.org/?version=stable&mode=debug&edition=2024&gist=4675f6eb33925940c51668ee15a00010
https://play.rust-lang.org/?version=stable&mode=debug&edition=2024&gist=4675f6eb33925940c51668ee15a00010
https://doi.org/10.1007/BF01018827
https://github.com/Gankra/thesis/blob/master/thesis.pdf
https://github.com/Gankra/thesis/blob/master/thesis.pdf

204

[Online]. Available: https://gitlab.mpi-sws.org/FP/ghostcell/-/blob/
master/ghostcell/examples/branded_vec.rs

[Online]. Available: https://en.wikipedia.org/wiki/Parametric_
polymorphism#Higher-rank_polymorphism

[Online]. Available: https://doc.rust-lang.org/nomicon/hrtb.html

[Online]. Available: https://github.com/ArhanChaudhary/generativity-
pattern-rs/commit/806c8bef89b1d0c0621db42c130856bf33ffbof

[Online]. Available: https://stackoverflow.com/users/865874/rodrigo
[Online]. Available: https://stackoverflow.com/a/76876800

[Online]. Available: https://github.com/ArhanChaudhary/generativity-
pattern-rs/blob/main/src/6-unsound_token.rs

[Online]. Available: https://codeberg.org/binarycat/typetoken/src/
branch/trunk/sre/lib.rs

[Online]. Available: https://codeberg.org/binarycat
[Online]. Available: https://crates.io/crates/typetoken

[Online]. Available: https://github.com/rust-lang/rfcs/pull/2040#
issuecomment-317275303

[Online]. Available: https://godbolt.org/z/4h4xccfiT

[Online]. Available: https://doc.rust-lang.org/nomicon/subtyping.html#
variance

[Online]. Available: https://doc.rust-lang.org/nomicon/phantom-data.
html#table-of-phantomdata-patterns

[Online]. Available: https://github.com/rust-lang/rust/issues/135806

[Online]. Available: https://github.com/rust-lang/rfcs/pull/3417#pullreq
uestreview-1396551771

[Online]. Available: https://doc.rust-lang.org/std/ops/trait. Drop.html#
drop-check

https://gitlab.mpi-sws.org/FP/ghostcell/-/blob/master/ghostcell/examples/branded_vec.rs
https://gitlab.mpi-sws.org/FP/ghostcell/-/blob/master/ghostcell/examples/branded_vec.rs
https://en.wikipedia.org/wiki/Parametric_polymorphism#Higher-rank_polymorphism
https://en.wikipedia.org/wiki/Parametric_polymorphism#Higher-rank_polymorphism
https://doc.rust-lang.org/nomicon/hrtb.html
https://github.com/ArhanChaudhary/generativity-pattern-rs/commit/806c8bef89b1d0c0621db42c130856bf33fffb9f
https://github.com/ArhanChaudhary/generativity-pattern-rs/commit/806c8bef89b1d0c0621db42c130856bf33fffb9f
https://stackoverflow.com/users/865874/rodrigo
https://stackoverflow.com/a/76876800
https://github.com/ArhanChaudhary/generativity-pattern-rs/blob/main/src/6-unsound_token.rs
https://github.com/ArhanChaudhary/generativity-pattern-rs/blob/main/src/6-unsound_token.rs
https://codeberg.org/binarycat/typetoken/src/branch/trunk/src/lib.rs
https://codeberg.org/binarycat/typetoken/src/branch/trunk/src/lib.rs
https://codeberg.org/binarycat
https://crates.io/crates/typetoken
https://github.com/rust-lang/rfcs/pull/2040#issuecomment-317275303
https://github.com/rust-lang/rfcs/pull/2040#issuecomment-317275303
https://godbolt.org/z/4h4xccfjT
https://doc.rust-lang.org/nomicon/subtyping.html#variance
https://doc.rust-lang.org/nomicon/subtyping.html#variance
https://doc.rust-lang.org/nomicon/phantom-data.html#table-of-phantomdata-patterns
https://doc.rust-lang.org/nomicon/phantom-data.html#table-of-phantomdata-patterns
https://github.com/rust-lang/rust/issues/135806
https://github.com/rust-lang/rfcs/pull/3417#pullrequestreview-1396551771
https://github.com/rust-lang/rfcs/pull/3417#pullrequestreview-1396551771
https://doc.rust-lang.org/std/ops/trait.Drop.html#drop-check
https://doc.rust-lang.org/std/ops/trait.Drop.html#drop-check

[Online]. Available: https://play.rust-lang.org/?version=stable&mode=
debug&edition=2024&gist=649d51907¢2612¢c310eb627a0c863399

[Online]. Available: https://hackmd.io/h9YBnlbaRSCD7Ej6hUpF_w

[Online]. Available: https://rust-lang.github.io/rfcs/1327-dropck-param-
eyepatch.html

[Online]. Available: https://rust-lang.github.io/rfcs/1238-
nonparametric-dropck. html#unguarded-escape-hatch

[Online]. Available: https://rust-lang.zulipchat.com/#narrow/stream/
144729-t-types/topic/Perma-unstable.20status.200f.20.60.23.5Bmay_
dangle.5D.60

[Online]. Available: https://github.com/rust-lang/rust/issues/76367
[Online]. Available: https://github.com/rust-lang/rust/issues/99408

[Online]. Available: https://doc.rust-lang.org/nomicon/dropck.html#an-
escape-hatch

[Online]. Available: https://github.com/rust-lang/rfcs/pull/3417
[Online]. Available: https://crates.io/crates/scopeguard

[Online]. Available: https://docs.rs/scopeguard/latest/src/scopeguard/
lib.rs.html#287

[Online]. Available: https://github.com/rust-lang/rust/issues/91377#
issuecomment-993875185

[Online]. Available: https://github.com/CAD97/generativity/pull/16

[Online]. Available: https://blog.rust-lang.org/2022/08/05/nll-by-
default/

[Online]. Available: https://github.com/rust-lang/polonius
[Online]. Available: https://rust.godbolt.org/z/vhMjKGbz3
[Online]. Available: https://github.com/rust-lang/rust/pull/139080

205

https://play.rust-lang.org/?version=stable&mode=debug&edition=2024&gist=649d51907c2612c310eb627a0c863399
https://play.rust-lang.org/?version=stable&mode=debug&edition=2024&gist=649d51907c2612c310eb627a0c863399
https://hackmd.io/h9YBnIbaRSCD7Ej6hUpF_w
https://rust-lang.github.io/rfcs/1327-dropck-param-eyepatch.html
https://rust-lang.github.io/rfcs/1327-dropck-param-eyepatch.html
https://rust-lang.github.io/rfcs/1238-nonparametric-dropck.html#unguarded-escape-hatch
https://rust-lang.github.io/rfcs/1238-nonparametric-dropck.html#unguarded-escape-hatch
https://rust-lang.zulipchat.com/#narrow/stream/144729-t-types/topic/Perma-unstable.20status.20of.20.60.23.5Bmay_dangle.5D.60
https://rust-lang.zulipchat.com/#narrow/stream/144729-t-types/topic/Perma-unstable.20status.20of.20.60.23.5Bmay_dangle.5D.60
https://rust-lang.zulipchat.com/#narrow/stream/144729-t-types/topic/Perma-unstable.20status.20of.20.60.23.5Bmay_dangle.5D.60
https://github.com/rust-lang/rust/issues/76367
https://github.com/rust-lang/rust/issues/99408
https://doc.rust-lang.org/nomicon/dropck.html#an-escape-hatch
https://doc.rust-lang.org/nomicon/dropck.html#an-escape-hatch
https://github.com/rust-lang/rfcs/pull/3417
https://crates.io/crates/scopeguard
https://docs.rs/scopeguard/latest/src/scopeguard/lib.rs.html#287
https://docs.rs/scopeguard/latest/src/scopeguard/lib.rs.html#287
https://github.com/rust-lang/rust/issues/91377#issuecomment-993875185
https://github.com/rust-lang/rust/issues/91377#issuecomment-993875185
https://github.com/CAD97/generativity/pull/16
https://blog.rust-lang.org/2022/08/05/nll-by-default/
https://blog.rust-lang.org/2022/08/05/nll-by-default/
https://github.com/rust-lang/polonius
https://rust.godbolt.org/z/vhMjKGbz3
https://github.com/rust-lang/rust/pull/139080

[51] [Online]. Available: https://blog.m-ou.se/super-let#a-potential-
extension

[52] [Online]. Available: https://github.com/ArhanChaudhary/generativity-
pattern-rs/blob/main/src/7-nonunifiable_proposal.rs

[53] [Online]. Available: https://play.rust-lang.org/?version=stable&mode=
debug&edition=2024&gist=47b36de838eaeeebe236e2f3b4aa279b

206

https://blog.m-ou.se/super-let#a-potential-extension
https://blog.m-ou.se/super-let#a-potential-extension
https://github.com/ArhanChaudhary/generativity-pattern-rs/blob/main/src/7-nonunifiable_proposal.rs
https://github.com/ArhanChaudhary/generativity-pattern-rs/blob/main/src/7-nonunifiable_proposal.rs
https://play.rust-lang.org/?version=stable&mode=debug&edition=2024&gist=47b36de838eaeeebe236e2f3b4aa279b
https://play.rust-lang.org/?version=stable&mode=debug&edition=2024&gist=47b36de838eaeeebe236e2f3b4aa279b

207

Qter: the Human Friendly Rubik’s Cube Computer
Arhan Chaudhary, Henry Rovnyak, Asher Gray

ABSTRACT. In this paper/report/whatever, we propose a computer architec-
ture called Qter that allows humans to perform computations by manipulating
Rubik’s Cube by hand. It includes a “machine code” for humans called Q
and a high-level programming language called QAT that compiles to Q. The
system also applies to other permutation puzzles, such as the 4x4, Pyraminx, or
Megaminx. We also present a program we call the Qter Architecture Solver that
executes on a classical computer to discover Qter architectures on arbitrary
puzzles.

208

https://github.com/ArhanChaudhary/qter/

Acknowledgments

We extend our sincere thanks to Tomas Rokicki for personally providing us key
insight into Rubik’s Cube programming techniques throughout the past year. Qter

would not have been possible without his guidance. We are immensely grateful
for his time.

We also extend our gratitude to Ben Whitmore for helping us ideate the initial
design of the Qter Architecture Solver.

209

Contents

1) Introductioniiiiiii e 211
1.1) Backgroundoouuunii 213
2) What is Qter? . ..ottt 218
2.0.1) Additionooiiiii e 219
2.0.2) Biggernumbers ... 220
2.0.3) Branching ... 221
2.0.4) Multiple numbers ... 221

2.1) Qlanguageuviii i 224
2.1.1) Logical inStructionsccooeviiiiiiiiiiiiiiiiia.. 225

2.2) QAT langUAZEttt 229
2.2.1) Global variablescooiiiiiiiiiiiii i 231
2.2.2) Basic InsStructionsoooiiiiiiiieiiiiiiiiiii e 232
2.2.3) Metaprogrammingouuuuneeeeeeeniianeeeeeeennnnn. 233
2.23.2) Deflnesoooviiiiiii i 233

2.23.0) MaCIOS ..\ ieiiie et 233

2.23.¢) LuaMacrosooviiiii et 237

2.23.d) Importing ... 238

2.2.4) Standard library 239

2.3) MemOTy taPeS ...ttt e 242
3) Qter Architecture SOIVercoviiiiiiii e 246
3.1) Introductionooiiiiii i e 246
3.1.1) Grouptheory ... 246
3.1.2) Permutation Groupsccoeemuiiiiinneeeeiiiiiiiinnnnnn. 249
3.1.3) Parity and Orientation sumiiiian 253
3.1.4) Cycle structures ... 259
3.1.5) Orientation and parity sharingo.... 262
3.1.6) What is the Qter Architecture Solver? 263

3.2) Cycle Combination Findercooooiiiiiiiiiiii.. 264
3.2.1) Beginning with primesooooiiiii 265
3.2.2) Generalizing to cOmMpPOSItesccuuuuuuiiiiiininnnnn. 265
3.2.3) Combining multiple cyclesooiiiiiiiiii 266

3.3) Cycle Combination Solveroooviiiiiiiiiiiieiiinn. 267

210

3.3.1) Optimal solving background 267

3.3.2) Treesearching i, 268

3.3.3) Pruningoooiiiiiii 270

3.3.4) Pruning table design ... 273

3.3.4.a) Symmetry reductionl 273

3.3.4.b) Pruning table typescccoiiiiiiiiiiiiiiiin, 278

3.3.4.c) Pruning table compression 279

3.3.5) IDA” optimizationsoouuuiiiiiiii i 279

3.3.5.2) SIMD .. .ovnoe e 279

3.3.5.b) Canonical seqUencescocuuuuuuunnnn. 280

3.3.5.c) Sequence Symmetrycoevuuveeeiunnnn... 283

3.35.d) Pathmax ... 285

3.3.5.e) Parallel IDA* 286

3.3.6) Larger twisty puzzlesooooiiiiiiiiiiiiiiiiii 289

3.3.7) Movecount Coefficient Calculator 290

3.3.8) Re-running with fixed piecesccooiiiiiiiin 290

4) COnCIUSION ...ttt 291
5) Appendix A: GAP programmingc.eeeiiiiieiiiiiiiiiiiiaa... 292

1) Introduction
The Rubik’s Cube.

We’ve all seen it before; it is one of the most recognizable objects on Planet
Earth. But do you know how to solve one? If you’re the average person, you

211

probably don’t, but it’s actually much easier than you think. Instructions for
how to solve one can fit into just two pages [1]—that’s only 4% of the length
of this article! But what if I told you that “solving” was only scratching the
surface of things that you can do with a Rubik’s Cube. It’s like painting on a
canvas with only white paint: you can make endless varieties of strokes and
swirls, but it always has the same result: a blank canvas—a solved cube. It turns
out that there’s a whole world of color out there, and we are ready to show it
to you.

What if I gave you a different set of Rubik’s Cube instructions, not for solving
it, but perhaps for something else. You don’t need to know how to read this,
for we will teach you later...

1 | input "Which Fibonacci number to calculate:"
B2 U2 LF' RBL2D2BR'FL
max-input 8

solved-goto UFR 14

DL'"FL2BL"F LB'"D'L'

L'" F' RB'" D2 L2 B' R" F L' U2 B2

solved-goto UFR 15

repeat until DL DFL solved
LU BR"'LB'"L"U'

L UR2 B R2 D2 R2 D'

L' F* RB' D2 L2 B' R' F L' U2 B2

solved-goto UFR 16

9 | repeat until FR DRF solved

D' B' U2 BD' F'DL'D2
F' R' D2 F2 R F2 R2 U' R'

10 | L' F' RB' D2 L2 B' R' F L' U2 B2

11 | solved-goto UFR 17

12 | repeat until UF solved

BR2D'"RBDF2U2D'
F' L2 FD2 FB2D' L' U'

SO Uk WN

o

13 | goto 4

14 | halt "The number is: 0"

15 | halt until DL DFL solved
"The number is"
LDBL'"FLB'"L2F LD'

212

16 | halt until FR DRF solved

"The number is"

F2 L2 U2 D' RU'"BL"BL"U'
17 | halt until UF solved

"The number is"

uL'"R"F"U"F'"L'"F2LUR
...but if you repeat the “input” scramble n times, follow the instructions from
top to bottom, and reach the “halt” instruction, your Rubik’s Cube will not be
solved, but rather hold a very special scramble. If you repeat the halt scramble
on it over and over again, the cube will actually become solved. How many
times do you have to repeat it until it becomes solved? The nth Fibonacci
number times. You just used your Rubik’s Cube as a computer. But how is that
even possible?

1.1) Background

Before we can explain how to turn a Rubik’s Cube into a computer, we have to
explain what a Rubik’s Cube is and the fundamental mathematics behind how
it works. First, a Rubik’s Cube is made out of three kinds of pieces: Corners,
Edges, and Centers.

213

You can see that the centers are attached to each other by the core and are only

able to rotate in place. This allows us to treat the centers as a fixed reference
frame to tell whether or not a sticker is on the correct side. For example, if we
have the following scramble,

e O
W
WS
\Qg

it may look as if the centers are the only thing unsolved, but in fact we would
actually consider everything else to be unsolved. The reason is that all of the
stickers are different from the center on the same side as it. Next, people who
are beginners at solving Rubik’s Cubes often make the mistake of solving
individual stickers instead of whole pieces.

214

If someone does this, then they haven’t actually made progress towards a
solution because the stickers on the pieces move together, which means that all
of the pieces on the green face in the example given will have to be reshuffled
to bring the rest of the stickers to their correct faces. Instead, it’s better to solve
a full “layer” (3x3x1 block), because all of the pieces are in their correct spots
and won’t need to be moved for the entire rest of the solve. The takeaway
being that in general, we need to think about the cube in terms of pieces rather
than in terms of stickers.

Now, we need some way to notate scrambles and solutions on a Rubik’s Cube.
We will use the conventional “Singmaster Notation” which is standard in the
Rubik’s Cube solving community [2]. First, we will name the six sides of a
Rubik’s Cube Up (U), Down (D), Right (R), Left (L), Front (F), and Back (B). Then,
we will let the letter representing each face represent a clockwise turn about
that face.

215

U D R
f%? i%i N
W W N5

To represent double turns or counterclockwise turns, we append a 2 or a '
respectively to the letter representing the face.

U U2 U’
WS Weed \N\ges
W

Here is a full table of all 18 moves for reference:

216

U D R L F 5

» @ g@? @ @g @g ‘ﬂgg’
2@ @ §§§§E§ i@g ii;;?? ‘ﬂg”i
o' E@? E@ @ E”” @ @

It may look like we’re forgetting some moves. After all, there are three layers
that you can turn, not just two, and we haven’t given names to turns of the
three middle slices. However, we don’t actually need to consider them because
“slice” turns can be written in terms of the 18 “face” turns.

?7? R’ L

H
g

Those two cube states are actually the same because if you take the first cube
and rotate it so that the green center is in front and the white center is on top
again, we would see that it is exactly the same as the second cube. Since we’re
using the centers as a reference point, we can consider these two cube states
to be exactly the same. Slice turns do have names, but we don’t need to care
about them for the purpose of this paper.

Another thing that we will need to name are the pieces of a Rubik’s Cube. To
do this, we can simply list the sides that the piece has stickers on. For example,

217

we can talk about the “Up, Front, Right” or UFR corner, or the “Front, Left” —
FL — edge.

UFR

7

This system is able to uniquely identify all of the pieces. Finally, a sequence of
moves to apply to a Rubik’s Cube is called an algorithm. For example, (L2 D2
L’ U’ LD2 L’ UL)is an algorithm that speed cubers memorize to help them
at the very end of a solution when almost every piece is solved. It performs a
three-cycle of the UBL, DBL, and DBR corners:

L2D2L’U'LD2L’ UL

FL —=

2) What is Qter?

Now that you understand what a Rubik’s Cube is and the fundamental
mechanics, we can explain the ideas of using it to perform computation. The
most important thing for a computer to be able to do is represent numbers.
Let’s take a solved cube and call it “zero”.

The fundamental unit of computation in Qter is an algorithm, or a sequence of
moves to apply to the cube. The fundamental unit of computation on a classical
computer is addition, so let’s see what happens when we apply the simplest
algorithm, just turning the top face, and call it addition by one. What does this
buy us?

218

State State State State State
Zero One Two Three Four

We can call this new state “one”. Since we want the algorithm (U) to represent
addition, perhaps applying (U) again could transition us from state “one” to
state “two”, and again to state “three”, and again to state “four”?

When we apply (U) the fourth time, we find that it returns back to state “zero”.
This means that we can’t represent every possible number with this scheme.
We should have expected that, because the Rubik’s Cube has a finite number
of states whereas there are an infinite amount of numbers. This doesn’t mean
that we can’t do math though, we just have to treat numbers as if they “wrap
around” at four. This is analogous to the way that analog clocks wrap around
after twelve, and this form of math is well-studied under the fancier name
“modular arithmetic”.

2.0.1) Addition

Can we justify this way of representing numbers? Let’s consider adding “two”
to “one”. We reach the “two” state using the algorithm (U U), so if we apply
that algorithm to the “one” state, we will find the cube in the same state as if
we applied ((U) (U U)), or (U U U), which is exactly how we reach the state
“three”. It’s easy to see that associativity of moves makes addition valid in this
scheme. What if we wanted to add “three” to “two”? We would expect a result
of “five”, but since the numbers wrap around upon reaching four, we would
actually expect to reach the state of “one”. You can try on your own Rubik’s
Cube and see that it works.

219

What if we want to perform subtraction? We know that addition is performed
using an algorithm, so can we find an algorithm that adds a negative number?
Let’s consider the state that represents “one”. If we subtract one, we would
expect the cube to return to state “zero”. The algorithm that brings the cube
from state “one” to state “zero” is (U’). This is exactly the inverse of our initial
(U) algorithm. If we want to subtract two, we can simply subtract one twice as
before: (U’ U’).

You may notice that subtracting one is equivalent to adding three, because (U’)
is equivalent to (U U U). It may seem like this is a contradiction, but it actually
isn’t: Adding three to one gives four, but since four wraps around to zero, our
result is actually zero, as if we subtracted one. In general, any number can be
seen as either positive or negative: -1 =3, -2 = 2, and -3 = 1. You can manually
verify this yourself if you like. Interestingly, this is how signed arithmetic
works in a classical computer, but that’s irrelevant for our purposes.

2.0.2) Bigger numbers

If the biggest number Qter could represent was three, it would not be an
effective tool for computation. Thankfully, the Rubik’s Cube has 43 quintillion
states, leaving us lots of room to do better than just four. Consider the algo-
rithm (R U). What if instead of saying that (U) adds one, we say that (R U) adds
one? We can play the same game using this algorithm. The solved cube repre-
sents zero, (R U) represents one, (R U R U) represents two, etc. This algorithm
performs a much more complicated action on the cube, so we should be able
to represent more numbers. In fact, the maximum number we can represent
this way is 104, and the cube re-solves itself after 105 iterations. We would say
that the algorithm has order 105.

“Zero” “One” “Two” “104” “105”

There are still lots of cube states left; can we do better? Unfortunately, it’s
only possible to get to 1259, wrapping around on the 1260th iteration. You can

220

try this using the algorithm R U2 D' B D'. This has been proven to be the
maximum order possible [3].

2.0.3) Branching

The next thing that a computer must be able to do is branch: without it we
can only do addition and subtraction and nothing else. If we want to perform
loops or only execute code conditionally, qter must be able to change what
it does based on the state of the cube. For this, we introduce a solved-goto
instruction.

If you perform R U on a cube a bunch of times without counting, it’s essentially
impossible for you to tell how many times you did the algorithm by just looking
at the cube. With one exception: If you did it zero times, then the cube is solved
and it’s completely obvious that you did it zero times. Since we want qter code
to be executable by humans, the solved-goto instruction asks you to jump to
a different location of the program only if the cube is solved. Otherwise, you
simply go to the next instruction. This is functionally equivalent to a “jump-
if-zero” instruction which exists in most computer architectures.

RU)x??? (RU)x0

2.0.4) Multiple numbers

If you think about what programs you could actually execute with just a single
number and a “jump if zero” instruction, it would be almost nothing. It would
be impossible for solved-goto jumps to be taken without erasing all data
stored on the cube. What would be wonderful is if we could represent multiple
numbers on the cube at the same time.

Something cool about Rubik’s Cubes is that it’s possible for a long sequence
of moves to only affect a small part of the cube. For example, we showed in

221

the introduction an algorithm (L2 D2 L’ U’ L D2 L’ U L’) which cycles three
corners. Therefore, it should be possible to represent two numbers using two
algorithms that affect distinct “areas” of the cube.

The simplest example of this are the algorithms (U) and (D’). You can see that
(U) and (D’) both allow representing numbers up to three, and since they affect
different areas of the cube, we can represent two different numbers on the cube
at the same time. We call these “registers”, as an analogy to the concept in
classical computing.

(0,00 (1,00 (0,1) (1,1) (3,2 (1,3

W W W N

‘Eg!“ WA’ Ny \‘.!' ‘..”’
As described, solved-goto would only branch if the entire cube is solved,
however since each algorithm affects a distinct area of the cube, it’s possible for
a human to determine whether a single register is zero, by inspecting whether
a particular section of the cube is solved. Remember that “solved” means that
all of the stickers are the same color as the corresponding center.

0, ?) (?,0)

For the first cube in the above figure, it’s easy to tell that the first register is zero
because the entire top layer of the cube is solved. We can modify the “solved-
goto” instruction to input a list of pieces, all of which must be solved for the
branch to be taken, but not necessarily any more. The following illustrates a
successful solved-goto UF UFR instruction that would require jumping to a

222

different part of the program, as well as an unsuccessful one that would require
going to the next instruction.

UF and UFR UF solved
&solved) QFR unsolved

W/ ‘.1

Can we do better than two registers with four states? In fact we can! If you
try out the algorithmsR' F' L U' L UL F U' RandU F R' D' R2 F R’
U' D, you can see that they affect different pieces and both have order ninety.
You may notice that they both twist the DBL corner; this is not a problem
because they are independently decodable even ignoring that corner. One of
the biggest challenges in the development of qter has been finding sets of
algorithms with high orders that are all independently decodable. This is the
fundamental problem that the Qter Architecture Solver attempts to solve, and
will be discussed in later sections.

RFLULULFUR (1,0) UFR D R2FRUD (0,1)

e a() .. af
No<gg ! ‘ N \ g 5"

Another fun thing that tweaking the “solved-goto” instruction in this way
allows us to do is test whether the current value of a register is divisible by
a particular set of numbers. For example, returning to the register defined by
RU, we can test divisibility by three by looking at the the UFR corner.

223

RU (R U)?

F Qv

You can see that that piece resolves itself before the rest of the register does,
allowing us to check divisibility by three. This will be further elaborated on in
Section 3.1.

All of the concepts described actually apply to other so-called “twisty puzzles”,
for example the Pyraminx, which is essentially a pyramid shaped Rubik’s
Cube. Only the notation and algorithms would have to change. For the rest of
the paper, we will just look at the 3x3x3 because that is what most people are
familiar with.

This is in fact all that’s necessary to do things like calculating Fibonacci and
performing multiplication. So now, how can we represent Qter programs?

2.1) Q language

The Q language is Qter’s representation of an executable program. The file
format was designed in such a way that, with only basic Rubik’s Cube knowl-
edge, a human can physically manipulate a twisty puzzle to execute a program
and perform a meaningful computation.

Q files are expected to be read from top to bottom. Each line indicates an
instruction, the simplest of which is just an algorithm to perform on the cube.
For example:

Puzzles
A: 3x3
1| U"R2
2] LD

224

The Puzzles declaration specifies the types of twisty puzzles used. In this
example, it is declaring that you must start with a 3x3x3 cube, and that it
has the name “A”. The name is unimportant in this example, but becomes
important when operating on multiple cubes. The instructions indicate that
you must perform the algorithm U' R2 L D' on the Rubik’s Cube. You must
begin with the cube solved before following the instructions.

The Q file format also includes special instructions that involve the twisty
puzzle but require additional logic. These logical instructions are designed to
be simple enough for humans to understand and perform.

2.1.1) Logical instructions
« goto <number>

Jump to the specified line number instead of reading on to the next line. For

example:
Puzzles
A: 3x3
1] U R2
2 | LD
3 | goto 1

Indicates an infinite loop of performing (U’ R2 L D’) on the Rubik’s Cube. After
performing the algorithm, the goto instruction requires you to jump back to
line 1 where you started.

« solved-goto <number> <positions...>

If the specified positions on the puzzle each contain their solved piece, then
jump to the line number specified as if it was a goto instruction. Otherwise, do
nothing and go to the next instruction. Refer to Section 2.0.4 for more details.
For example:

Puzzles
A: 3x3

225

1| U" R2

2 | solved-goto 4 UFR UF
3] goto 1

41 LD

indicates performing (U’ R2) and then repeatedly performing (U’ R2) until the
UFR corner position and UF edge position contain their solved pieces. Then,
perform (L D’) on the Rubik’s Cube.

« solve

Solve the puzzle using your favorite method. Logically, this instruction zeroes
out all registers on the puzzle.

« repeat until <positions...> solved <algorithm>

Repeat the given algorithm until the given positions contain their solved
pieces. Logically, this is equivalent to

N | solved-goto N+3 <positions...>
N+1 | <algorithm>

N+2 | goto N

N+3 |

but is easier to read and understand. This pattern occurs enough in Q programs
that it is worth defining an instruction for it.

« input <message> <algorithm> max-input <number>

This instruction allows taking in arbitrary input from a user which will be
stored and processed on the puzzle. To give an input, repeat the given algo-
rithm “your input” number of times. For example:

Puzzles
A: 3x3

1 | input "Pick a number"

RUR"U'
max-input 5

226

To input the number two, execute the algorithm (R UR’ U’) (RUR’ U’)) on the
Rubik’s Cube. Notice that if you try to execute (R U R’ U’) six times, the cube
will return to its solved state as if you had inputted the number zero. Thus,
your input number must not be greater than five, and this is shown with the
max-input 5 syntax.

If a negative input is meaningful to the program you are executing, you can
input negative one by performing the inverse of the algorithm. For example,
negative two would be inputted as (UR U’ R’) (UR U’ R’)).

« halt <message> [<algorithm> counting-until <positions...>]

This instruction terminates the program and gives an output, and it is similar
to the input instruction but in reverse. To decode the output of the program,
repeat the given algorithm until the given positions given are solved. The
number of repetitions it took to solve the pieces, along with the specified
message, is considered the output of the program. For example:

Puzzles
A: 3x3

1 | input "Choose a number"

R UR"U'

max-input 5
2 | halt "You chose"

URU'"R'

counting-until UFR
In this example, after performing the input and reaching the halt instruction,
you would have torepeat U R U' R' until the UFR corner is solved. For example,
if you inputted the number two by performing (R U R' U') (R U R' U'), the
expected output will be two, since you have to perform U R U' R' twice to
solve the UFR corner. Therefore, the expected output of the program is “You
chose 2”.

If the program does not require giving a numeric output, then the algorithm
may be left out. For example:

227

Puzzles
A: 3x3

1 | halt "I halt immediately"
e print <message> [<algorithm> counting-until <positions...>]

This is an optional instruction that you may choose to ignore. The print in-
struction serves as a secondary mechanism to produce output without exiting
the program. The motivation stems from the fact that, without this instruction,
the only form of meaningful output is the single number produced by the halt
instruction.

To execute this instruction, repeat the given algorithm until the positions
are solved, analogous to the halt instruction. The number of repetitions this
took is then the output of the print statement. Then, you must perform the
inverse of the algorithm the same number of times, undoing what you just
did and returning the puzzle to the state it was in before executing the print
instruction. For example:

Puzzles
A: 3x3

1| RUR2B2ULU"'L"D"R"DRB2U2
2 | print "This should output ten:"
R U counting-until UFR UF
3 | halt "This should also output ten:"
R U counting-until UFR UF

Like the halt instruction, including only a message is allowed. In this case,
you can skip this instruction as there is nothing to do. For example:

Puzzles
A: 3x3

1 | print "Just a friendly debugging message :-)"

e« switch <letter>

228

This instruction allows Qter to support using multiple puzzles in a single
program. It tells you to put down your current puzzle and pick up a different
one, labeled by letter in the Puzzles declaration. It is important that you do
not rotate the puzzle when setting it aside or picking it back up. For example:

Puzzles

A: 3x3

B: 3x3

1| U

2 | switch B
3]R

This program requires two Rubik’s Cubes to execute. The instructions indicate
performing U on the first Rubik’s Cube and then R on the second. When the
program starts, you are expected to be holding the first cube in the list. Having
multiple Rubik’s Cubes is helpful for when a single one doesn’t provide enough
storage space for what you wish to do.

2.2) QAT language

Q would be very difficult to create programs in by hand, similarly to how it
is difficult to write programs in machine code directly. Therefore, we created
a high-level programming language called QAT (Qter Assembly Text) that is
designed to make it easy to write meaningful Qter programs. To run a program
in a traditional programming language, you compile your source code into
machine code that the computer processor then interprets and executes. The
Qter compilation pipeline works similarly.

229

GCC
Compiler

.C >

QAT
Compiler

.qat

.q

Executed
Using

Executed

: N
Using =E

To run your first QAT program, you will first need to install Cargo (talk about
installing Cargo) and then the qter compiler executable through the command
line: cargo install gter. Once set up, create a file named average.qgat with

the following program code.

.registers {

A, B <- 3x3 builtin (90, 90)

}
-- Calculate the average of two numbers
input "First number:" A
input "Second number:" B
print "Calculating average..."
sum_loop:
add A 1
add B 89
solved-goto B found_sum
goto sum_loop
found sum:

230

add A 1
divide by 2:
add A 89
solved-goto A stop
add A 89
solved-goto A stop
add B 1
goto divide by 2
stop:
halt "The average is" B

To compile this program, run qter compile average.gat to generate
average.q. To execute it, run qter interpret average.q and enter your
favorite two numbers into the prompts.

2.2.1) Global variables

Every QAT program begins with a .registers statement, used to declare
global variables named registers. The statement in the above average program
declares two global registers of size 90 to be stored on a Rubik’s Cube. That is,
additions operate modulo 90: incrementing a register of value 89 resets it back
to 0, and decrementing a register of value 0 sets it to 89.

The builtin keyword refers to the fact that valid register sizes are specified
in a puzzle-specific preset. For the Rubik’s Cube, all builtin register sizes are
in src/qter_core/puzzles/3x3.txt. Unlike tradi-
tional computers, gter is only able to operate with small and irregular register
sizes.

You can choose to use larger register sizes at the cost of requiring more puzzles.
For example, 1260 is a valid builtin register size that needs an entire Rubik’s
Cube to declare. If your program wants access to more than one register, it
would have to use multiple Rubik’s Cubes for more memory.

.registers {
A <- 3x3 builtin (1260)
B <- 3x3 builtin (1260)

231

To access the remainder of a register as explained in Section 2.0.4, you can
write, for example, A%3 to access the remainder after division by three.

The .registers statement is also used to declare memory tapes, which help
facilitate local variables, call stacks, and heap memory. This idea will be
expanded upon in Section 2.3.

2.2.2) Basic instructions

The basic instructions of the QAT programming language mimic an assembly-
like language. If you have already read Section 2.1, notice the similarities with
QAT.

« add <variable> <number>

Add a constant number to a variable. This is the only way to change the value
of a variable.

« goto <label>

Jump to a label, an identifier used to mark a specific location within code. The
syntax for declaring a label follows the common convention amongst assembly
languages:

infinite loop:
goto infinite loop

« solved-goto <variable> <label>

Jump to a label if the specified variable is zero. The name of this instruction is
significant in the Q file format.

o input <message> <variable>

Ask the user for numeric input, which will be added to the given variable.
o print <message> [<variable>]

Output a message, optionally followed by a variable’s value.

« halt <message> [<variable>]

232

Terminate the program with a message, optionally followed by a variable’s
value.

2.2.3) Metaprogramming

As described, QAT is not much higher level than Q... Ideally we need some
kind of construction to allow abstraction and code reuse. Due to the fact
that Rubik’s Cubes have extremely limited memory, we cannot maintain a
call stack in the way that a classical computer would. Therefore, we cannot
incorporate functions into QAT. Instead, we have a rust-inspired macro system
that operates through inlining. Note that this macro system is unimplemented
at the time of writing.

2.2.3.a) Defines
The simplest form of this provided by QAT is the simple .define statement,
allowing you to define a variety of global constants.

.define PI 3 -- Global Integer
.define ALSO PI $PI -- Reference a previous define statement
.define ALSO A A -- Save an identifier
.define DO _ADDITION { -- Name a whole code block
add A 10
}
add A $PI

add $ALSO A $ALSO PI
$D0_ADDITION
-- "A" will store the number 16

However, this is most likely too simple for your use case...

2.2.3.b) Macros
Macros roughly have the following syntax:

.macro <name> {
(<pattern>) => <expansion>
(<pattern>) => <expansion>

233

As a simple example, consider a macro to increment a register:

.macro inc {
($R:reg) => add $R 1
}

You would invoke it like

inc A

and it would be transformed at compile time to
add A 1

In the macro definition, $R represents a placeholder that any register could
take the place of.

Now consider a more complicated macro, one to move the value of one register
into another:

.macro move {
($R1:reg to $R2:reg) => {

loop:
solved-goto $R1 finished
dec $R1
inc $R2
goto loop

finished:

}
You would invoke it like
move A to B

The word to is simply an identifier that must be matched for the macro
invocation to compile. It allows you to make your macros read like english.
This invocation would be expanded to
loop:

solved-goto A finished

dec A
inc B

234

goto loop
finished:

which would be expanded again to

loop:
solved-goto A finished
sub A 1
add B 1
goto loop
finished:

The expansion of sub will depend on the size of register A, and we’ll see how
to define the sub macro later.

Labels in macros will also be unique-ified so that if you invoke move twice,
the labels will not conflict. This will also prevent you from jumping inside the
macro invocation from outside:

move A to B
goto finished -- Error: the “finished™ 1label is undefined

Already, we have created a powerful system for encapsulating and abstracting
code, but we still have to perform control flow using manual labels and
jumping. Can we extend our macro system to allow defining control flow? In
fact, we can! We can define an if macro like

.macro if {

(solved $R:reg $code:block) => {
solved-goto $R do if
goto after if

do if:
$code
after if:

}

and we can invoke it like

235

if solved A {
-- Do something

}
which would be expanded to

solved-goto A do if
goto after if
do if:
-- Do something
after if:

Here, $code is a placeholder for an arbitrary block of code, which allows
defining custom control flow. The unique-ification of labels also covers code
blocks, so the following wouldn’t compile:

if solved A {
goto do_if -- Error: the “do if" label is undefined

}

Let’s try defining a macro that executes a code block in an infinite loop:

.macro loop {
($code:block) => {
continue:

$code
goto continue
break:

}
We can invoke it like

loop {

inc A
}
but how can we break out of the loop? It would clearly be desirable to be able
to goto the continue and break labels that are in the macro definition, but we
can’t do that. The solution is to mark the labels public, like

236

.macro loop {
($code:block) => {
Icontinue:

$code
goto continue
'break:

}

The exclamation mark tells the compiler that the label should be accessible to
code blocks inside the macro definition, so the following would be allowed:

loop {
inc A

if solved A {

goto break

}
}
However, the labels are not public to the surroundings of the macro to preserve
encapsulation.
loop {

-- Stuff
}
goto break -- Error: the “break™ label is undefined

2.2.3.c) Lua Macros

For situations where macros as described before aren’t expressive enough, you
can embed programs written in Lua into your QAT code to enable compile-
time code generation. Lets see how the sub macro can be defined:

.start-lua
function subtract order relative(rl, n)
return { { "add", rl, order of reg(rl) - n } }
end
end-lua

.macro sub {

237

($R:reg $N:int) => lua subtract order_relative($R, $N)
}

lua is a special statement that allows you to call a lua function at compile-
time, and the code returned by the function will be spliced in its place. Lua
macros should return a list of instructions, each of which is itself a list of the
instruction name and arguments.

Here, invoking the sub macro will invoke the lua code to calculate what the
sub macro should actually emit. In this example, the lua macro accesses the
size of the register to calculate which addition would cause it to overflow and
wrap around, having the effect of subtraction. It would be impossible to do
that with simple template-replacing macros.

In general, you can write any lua code that you need to in order to make what
you need to happen, happen. There are a handful of extra functions that QAT
gives Lua access to.

big(number) -> bigint -- Takes in a standard lua number and
returns a custom bigint type that is used for register orders and
instructions

order of reg(register) -> bigint -- Inputs an opaque reference to
a register and returns the order of that register

If the lua code throws an error, compilation will fail.
You can also invoke lua code in define statements:

.start-lua
function bruh()
return 5
end
end-lua

.define FIVE lua bruh()

2.2.3.d) Importing

Finally, it is typically desirable to separate code between multiple files. QAT
provides an import statement that brings all defines and macros of a different
QAT file into scope, and splices any code defined in that file to the call site.

238

-- file-a.qat

.registers {
A <- 3x3 builtin (1260)

}

add A 1
import "./file-b.qgat"
thingy A

halt A
-- file-b.qgat

add A 12

.macro thingy {
($R:reg) => {
add $R 10
}
}

Compiling and executing file-a.qgat would print 23.

2.2.4) Standard library

Lucky for you, you get a lot of macros built into the language! The
QAT standard library is defined at [src/qter_core/prelude.qat](src/qter_core/
prelude.qat) and you can reference it if you like.

sub <register> <number>
Subtract a number from a register
inc <register>

Increment a register

dec <register>

Decrement a register

move <registerl> to <register2>

239

Zero out the first register and add its contents to the second register
set <registerl> to <register2>

Set the contents of the first register to the contents of the second while zeroing
out the contents of the second

set <register> to <number>
Set the contents of the first register to the number specified
if solved <register> <{}> [else <{}>]

Execute the code block if the register is zero, otherwise execute the else block
if supplied
if not-solved <register> <{}> [else <{}>]

Execute the code block if the register is not zero, otherwise execute the else
block if supplied

if equals <register> <number> <{}> [else <{}>]

Execute the code block if the register equals the number supplied, otherwise
execute the else block if supplied

if not-equals <register> <number> <{}> [else <{}>]

Execute the code block if the register does not equal the number supplied,
otherwise execute the else block if supplied

if equals <registerl> <register2> using <register3> <{}> [else

<{}>]

Execute the code block if the first two registers are equal, while passing in a
third register to use as bookkeeping that will be set to zero. Otherwise executes
the else block if supplied. All three registers must have equal order. This is
validated at compile-time. The equality check is implemented by decrementing
both registers until one of them is zero, so the bookkeeping register is used to
save the amount of times decremented.

if not-equals <registerl> <register2> using <register3> <{}>
[else <{}>]

240

Execute the code block if the first two registers are not equal, while passing in a
third register to use as bookkeeping that will be set to zero. Otherwise executes
the else block if supplied. All three registers must have equal order. This is
validated at compile-time. The equality check is implemented identically to if
equals ... using

loop <{}>

'continue

'break

Executes a code block in a loop forever until the break label or a label outside
of the block is jumped to. The break label will exit the loop and the continue
label will jump back to the beginning of the code block

while solved <register> <{}>
!continue
'break

Execute the block in a loop while the register is zero

while not-solved <register> <{}>
'continue
'break

Execute the block in a loop while the register is not zero

while equals <register> <number> <{}>
!continue
'break

Execute the block in a loop while the register is equal to the number provided

while not-equals <register> <number> <{}>
'continue
'break

Execute the block in a loop while the register is not equal to the number
provided

while equals <registerl> <register2> using <register3> <{}>
'continue
Ibreak

241

Execute the block in a loop while the two registers are equal, using a third
register for bookkeeping that will be zeroed out at the start of each iteration.
while not-equals <registerl> <register2> using <register3> <{}>

Icontinue
'break

Execute the block in a loop while the two registers are not equal, using a third
register for bookkeeping that will be zeroed out at the start of each iteration.

repeat <number> [<ident>] <{}>

Repeat the code block the number of times supplied, optionally providing a
loop index with the name specified. The index will be emitted as a .define
statement.

repeat <ident> from <numberl> to <number2> <{}>
Repeat the code block for each number in the range [number1, number2)
multiply <registerl> <number> at <register2>

Add the result of multiplying the first register with the number provided to
the second register, while zeroing out the first register

multiply <registerl> <register2> using <register3>

Multiply the first two registers, storing the result in the first register and
zeroing out the second, while using the third register for bookkeeping. The
third register will be zeroed out. All three registers must be the same order,
which is checked at compile time.

2.3) Memory tapes
Now we’re getting to the more theoretical side, as well as into a design space
that we’re still exploring. Things can easily change.

There are plenty of cool programs one can write using the system described
above, but it’s certainly not Turing complete. The fundamental reason is that
we only have finite memory... For example it would be impossible to write
a QAT compiler in QAT because there’s simply not enough memory to even
store a whole program on a Rubik’s Cube. In principle, anything would be

242

possible with infinite Rubik’s Cubes, but it wouldn’t be practical to give all
of them names since you can’t put infinite names in a program. How can we
organize them instead?

The traditional solution to this problem that is used by classical computers
is pointers. You assign every piece of memory a number and allow that
number to be stored in memory itself. Each piece of memory essentially has a
unique name — its number — and you can calculate which pieces of memory
are needed at runtime as necessary. However, this system won’t work for
qter because we would like to avoid requiring the user to manually decode
registers outside of halting. We allow the print instruction to exist because it
doesn’t affect what the program does and can simply be ignored at the user’s
discretion.

Even if we did allow pointers, it wouldn’t be a foundation for the usage of
infinite memory. The maximum number that a single Rubik’s Cube could
represent if you use the whole cube for one register is 1259. Therefore, we
could only possibly assign numbers to 1260 Rubik’s Cubes, which would still
not be nearly enough memory to compile a QAT program.

Since our language is so minimal, we can take inspiration from perhaps the
most famous barely-Turing-complete language out there (sorry in advance)...
Brainfuck!! Brainfuck consists of an infinite list of numbers and a single
pointer (stored externally) to the “current” number that is being operated on.
A Brainfuck program consists of a list of the following operations:

+ > Move the pointer to the right

+ < Move the pointer to the left

« + Increment the number at the pointer

+ - Decrement the number at the pointer

+ . Output the number at the pointer

+ , Input a number and store it where the pointer is

+ [Jump past the matching] if the number at the pointer is zero

+] Jump to the matching [if the number at the pointer is non-zero

The similarity to Qter is immediately striking and it provides a blueprint for
how we can support infinite cubes. We can give Qter an infinite list of cubes

243

called a memory tape and instructions to move left and right, and that would
make Qter Turing-complete. Now Brainfuck is intentionally designed to be
a “Turing tarpit” and to make writing programs as annoying as possible, but
we don’t want that. For the sake of our sanity, we support having multiple
memory tapes and naming them, so you don’t have to think about potentially
messing up other pieces of data while traversing for something else. To model
a tape in a hand-computation of a qter program, one could have a bunch of
Rubik’s Cubes on a table laid out in a row and a physical pointer like an arrow
cut out of paper to model the pointer. One could also set the currently pointed-
to Rubik’s Cube aside.

Lets see how we can tweak Q and QAT to interact with memory tapes. First,
we need a way to declare them in both languages. In Q, you can write

Puzzles
tape A: 3x3

to mark A as a tape of 3x3s rather than just one 3x3. In QAT, you can write

.registers {
tape X ~ A, B « 3x3 builtin (90, 90)
}

to declare a memory tape X of 3x3s with the 90/90 architecture. Equivalently,
you can replace the tape keyword with the ‘B3’ emoji in both contexts:
Puzzles

== A: 3x3

.registers {
= X ~ A, B « 3x3 builtin (90, 90)
}

In Q, we need syntax to move the tape left and right, equivalent to < and > in
Brainfuck. As with multiple Rubik’s Cubes, tapes are switched between using
the switch instruction, and any operations like moves or solved-goto will
apply to the currently pointed-to Rubik’s Cube.

. move-left [<number>]

244

Move the pointer to the left by the number of spaces given, or just one space
if not specified

« move-right [<number>]

Move the pointer to the right by the number of spaces given, or just one space
if not specified

In QAT, tapes can be operated on like...

.registers {
&= X ~ A, B « 3x3 builtin (90, 90)

add X.A 1 -- Add one to the A" register of the currently
selected Rubik's Cube on the "X tape

move-right X 1 -- Move to the right
print "A is" X.A -- Prints A is O because we added one to the
cube on the left

move-left X 1 -- Move to the left
print "A is" X.A -- Prints "A is 1° because this is the puzzle
that we added one to before

We poo-pooed pointers previously, however this system is actually powerful
enough to implement them using QAT’s metaprogramming functionality,
provided that we store the current head position in a register external to the
tape. The following deref macro moves the head to a position specified in the
to register, using the current register to track the current location of the head.

.macro deref {
($tape:tape $current:reg $to:reg) => {
-- Move the head to the zero position
while not-solved $current {
dec $current
move-left $tape
}

-- Move the head to "to°

245

while not-solved $to {
dec $to
inc $current
move-right $tape

}

3) Qter Architecture Solver
3.1) Introduction

Now that we understand how to write programs using Qter, how can we
actually find sets of algorithms that function as registers? For this, it’s time to
get into the hardcore mathematics...

3.1.1) Group theory

First, we have to build a foundation of how we can represent Rubik’s Cubes in
the language of mathematics. That foundation is called group theory. A groupis
defined to be a set equipped with an operation (denoted ab or a - b) that follows
the following group axioms:

» There exists an identity element e such that for any element of the group a,
a-e=a.

« For all elements a, b, ¢, (a - b) - ¢ = a - (b - ¢). In other words, the operation
is associative.

1

« For each a in the group, there exists a~! such that a-a~! = e. In other

words, every element has an inverse with respect to the group operation.

Importantly, commutativity is not required. So let’s see how this definition
applies to the Rubik’s Cube. To form a group, we need a set, and for the Rubik’s
Cube, this set is all 4.3 - 10!° possible cube states and scrambles, excluding
rotations. For example, the solved state is an element of the set. If you turn
the top face then that’s an element of the set. If you just scramble your cube
randomly and do any sequence of moves, then even that’s part of the set.

246

Next, we need an operation. For the Rubik’s Cube, this will be jamming
together the algorithms that reach the two cube states. We will call this
operation composition because it is very similar to function composition.

RUR U FL @RURU)(FL)

2%
W 99

Now, let’s verify that all of the group axioms hold. First, we need an identity
element. This identity is simply the solved state! Lets verify this, and let A be
an arbitrary scramble:

A 0 (A) () =A

=\ ’g
W

Regardless of what the first cube state is, appending the “do nothing” algorithm
will lead to the same cube state. Next, lets verify associativity, letting A, B,
and C be arbitrary scrambles.

247

AB C @AB(C)=ABC

A
S s
W -7

A

Because of the nature of how jamming together algorithms works, parentheses
can essentially be ignored. Therefore, the composition operation is associative.
Finally we must show that every cube position has an inverse. Intuitively,
we should expect an inverse to exist simply because we can undo whatever
algorithm created the scramble. Here is an algorithm to find the inverse of a
scramble:

function inverse(moves: List<Move>): List<Move> {
reverse(moves)

for (move in moves) {
if move.ends with("'") {
remove(' from move)
} else if move.ends with("2") {
// Leave it
} else {
append(”'" to move)
}
}

248

return moves

}

This works because any clockwise base move X cancels with it’s counterclock-
wise pair X’ and vice versa, and any double turn X2 cancels with itself.

R'U2F L-inverse(R' U2 FL)=(R' U2 F L)(L' F' U2 R)
=R'U2FF U2R
=R'U2U2R
=R'R
=0

Next, it is important to distinguish a cube state from an algorithm to reach that
cube state. We just described the group of Rubik’s cube algorithms but not the
group of Rubik’s cube states. The groups are analagous but not identical: after
all, there are an infinite number of move sequences that you can do, however
there is only a finite number of cube states. We can say that the group of
Rubik’s cube algorithms is an action on the group of Rubik’s cube states. We
will explore this group of Rubik’s cube states next, because it turns out that it is
much more amenable to mathematical analysis and representation inside of a
computer. After all, it would be problematic performance-wise if composition
of Rubik’s cube states was performed by concatenating potentially unbounded
lists of moves, and it doesn’t give us insight into the structure of the puzzle
itself. To show a better way to represent a Rubik’s cube state, I first have to
explain...

3.1.2) Permutation groups

There are lots of other things that can form groups, but the things that we’re
interested in are permutations, which are re-arrangements of items in a set.
For example, we could notate a permutation like

249

where the arrows define the rearrangement. Note that we can have permuta-
tions of any number of items rather than just five. We can leave out the top row
of the mapping because it will always be the numbers in order, so we could
notate it 2,1, 4, 3,0. We can see that this permutation can also be thought of
as an invertible, or bijective, function between the numbers {0, 1,2,3,4} and
themselves.

So now, lets construct a group. The set of all permutations of a particular
size, five in this example, will be the set representing our group. Then, we
need an operation. Since permutations are basically functions, permutation
composition can simply be function composition!

Permutation composition

a= 2, 1, 4, 3, 0
b= 4, 3, 0, 2, 1
R

From here, the group axioms are trivial. Our identity e is the do-nothing
permutation, 0, 1,2, 3, 4. We know that associativity holds because permuta-
tion composition is identical to function composition which is known to be
associative. We know that there is always an inverse because permutations are
bijective mappings and you can simply reverse the arrows to form the inverse:

01 2 3 4 01 2 3 4
e W N R S A A
2 1 430 410 3 2

Therefore, permutation composition satisfies all of the group axioms, so it is
a group. Next, there also exists a much cleaner way to notate permutations,
called cycle notation. The way you would write a in cycle notation is as
(0,2,4)(1)(3). Each item maps to the next item in the list, wrapping around
at a closing parenthesis. The notation is saying that 0 maps to 2, 2 maps to 4,
4 maps to 0 (because of the wraparound), 1 maps to itself, and 3 also maps to

250

itself. This is called “cycle notation” because it shows clearly the underlying
cycle structure of the permutation. 0, 2, and 4 form a three-cycle and 1 and 3
both form one-cycles. It is also conventional to leave out the one-cycles and
to just write down (0, 2, 4).

This notation also provides a simple way to determine exactly how many times
one can exponentiate a permutation for it to equal identity. Since a three-cycle
takes three iterations for its elements to return to their initial spots, you can
compose a three-cycle with itself three times to give identity. In full generality,
we have to take the least common multiple of all of the cycle lengths to give that
number of repetitions. For example, the permutation (0,1, 2)(3,4,5,6) has a
three-cycle and a four-cycle, and the LCM of three and four is 12, therefore
exponentiating it to the twelfth power gives identity.

A permutation is something that we can easily represent in a computer, but
how can we represent a Rubik’s Cube in terms of permutations? It is quite
simple actually...

A Rubik’s Cube forms a permutation of the stickers! We don’t actually have to
consider the centers because they don’t move, so we would have a permutation
of (9 — 1) - 6 = 48 stickers. We can define the turns on a Rubik’s Cube in terms
of permutations like so [4]:

251

25,27, 32, 30
9,11,16,14)

~—

(26,29, 31,28)(3, 38, 43, 19)(5, 36, 45, 21)(8, 33, 48, 24)
10,13,15,12)(1, 17, 41,40)(4, 20, 44, 37)(6, 22, 46, 35)
(18,21,23,20)(6, 25, 43,16)(7, 28, 42, 13)(8, 30, 41, 11)
(34,37,39,36)(3,9,46,32)(2, 12,47, 29)(1, 14, 48, 27)

Il
—
~
—_
©
[\
=~
[\)
)
~— ~—

The exact numbers aren’t actually relevant for understanding, but you can
sanity-check that exponentiating all of them to the fourth gives identity, due
to all of the cycles having length four. This matches our expectation of how
Rubik’s Cube moves should work.

Now, if we restrict our set of permutations to only contain the permutations
that are reachable through combinations of (U, D, R, L, F', B) moves (after
all, we can’t arbitrarily re-sticker the cube), then this structure is mathemat-
ically identical — isomorphic — to the Rubik’s Cube group. This is called a
subgroup of the permutation group of 48 elements because the Rubik’s Cube
group is like its own group hidden inside that group of permutations.

It may appear as if our definition of the Rubik’s cube group includes too many
elements: after all, each sticker on a Rubik’s cube has seven identical twins, but
we’re giving them different numbers and treating them as if they were unique.
If there existed an algorithm that could swap two stickers of the same color,
then our definition would count those as different states whereas they would
really be the same state. However, we don’t have to worry about this because
all of the pieces on a cube are unique. The only way to swap two stickers would
be to swap two pieces, and that would definitely produce a different cube state.
Note that we don’t get to make that assumption for puzzles like the 4x4x4
which have identical center pieces, however we are conveniently not writing

about the 4x4x4 because our code doesn’t even work for that yet 2.

One final term to define is an orbit. An orbit is a collection of stickers (or
whatever elements are being permuted, in full generality) such that if there
exists a sequence of moves that moves one sticker in the orbit to another

252

sticker’s place, then that other sticker must be in the same orbit as the first.
On a Rubik’s Cube, there are two orbits: the corners and the edges. There
obviously doesn’t exist an algorithm that can move a corner sticker to an edge
sticker’s place or vice versa, therefore the corners and edges form separate
orbits. Intuitively, you can find orbits of any permutation subgroup by coloring
the stickers using the most colors possible such that the colors don’t change
when applying moves.

() R

Excluding centers, the best we can do is two colors, and those two colors

highlight the corner and edge orbits.

3.1.3) Parity and Orientation sum

Now, we need to show some properties of how the Rubik’s Cube group works.
First, we would ideally like a way to take pieces into account in our represen-
tation of the Rubik’s Cube group. After all, we showed in the introduction
how important they are to the mechanics of the cube. What we could do is
instead of having a permutation group over all of the stickers, we could have
a permutation group over all of the pieces. There are 12 edges + 8 corners = 20
pieces on a Rubik’s Cube, so we need a subgroup of the permutations on 20
elements. That’s fine and dandy, but actually not sufficient to encode the full
cube state. The reason is that pieces can rotate in place:

253

You can see that happening here, where the UFR corner is twisted in place in
the first example and the FR edge is flipped in place in the second example.
This shows that just encoding the positions of the pieces under-specifies the
entire cube state, so we need to take orientation into account.

In general, any edge or corner can exist in any other edge or corner position
in any orientation. So how can we encode this orientation in full generality?
It’s easy to tell that the UFR corner and FR edge are twisted and flipped
respectively in the above examples because the pieces can be solved by simply
rotating them in place. However, when the pieces are not in their solved
positions, there is no way to solve them just by rotating them in place. We
need some kind of reference frame to decide how to label a piece’s orientation
regardless of where it is on the cube. How can we define this reference frame?

Since the problem is that pieces can be unsolved, what we can do is imagine
a special recoloring of the cube such that all pieces are indistinguishable but
still show orientation. If the pieces aren’t distinguishable, then they’re always
in their “solved positions” since you can’t tell them apart. Then it’s easy to
define orientation in full generality. Here is a recoloring that does that:

T L
“\!” \ N ‘.\ e
W’ <

You can imagine that we are taking a Rubik’s cube and replacing all of the
stickers with new stickers of the respective colors. The reason that we can do

254

this is that we already know how to represent the locations of pieces using
a permutation group, so it is valid to throw out the knowledge of a piece’s
location while figuring out how to represent orientation. To determine the
orientation of a piece on a normally colored Rubik’s Cube, you can take the
algorithm to get to that cube state and apply it to our specially recolored cube:

> B
AN
l
o %o
l <>
| Y
o 4
|
[®

Even though the UFR corner isn’t in its solved position, we can still say that
the piece in the UFR position is twisted because the blue sticker isn’t facing up,
like it is in the recolored solved state. You would be able to “solve” that piece
—make it look like the respective position in the recolored solved state—by
simply rotating it in place. This gives us a reference frame to define orientation
for a piece regardless of where it is located on the cube.

Note that this recoloring is entirely arbitrary and it’s possible to consider any
recoloring of the solved state such that all pieces are indistinguishable but still
exhibit orientation, as long as you are consistent with your choice. However,
this recoloring is standard due to its nice symmetries as well as properties we
will describe in the next paragraph.

Based on this recoloring, you can see that the move set (U, D, R2, F'2, L2, B2)
preserves orientation of all of the pieces, and on top of that, R and L preserve
orientation of the edges but not of the corners. The moves F' and B flip four
edges, while R, F', L, and B twist four corners.

255

R F

@O O
> 3 > >
0’0’ ..= 0.0

L\ O\

N \
N &' Y e

Note that corners actually have two ways of being misoriented. If the corner
is twisted clockwise, we say that its orientation is one, and if it’s counter-
clockwise, we say that its orientation is two. Otherwise, it is zero.

1 2
<2 <%
W Q)

We know that F' and B flip four edges, but what do R, F, L, and B do to
corners? Well whatever it is, those four do the same thing because all four
of those moves are symmetric to each other with respect to corners in our

recoloring. Therefore, we can track what happens to the corners for just one
of them.

R

P %

n’nﬁﬂ R
e

!H +1 e

This should make logical sense. We already know that if you apply R twice,
the corners don’t get twisted, and that can be seen in the figure as well. If you

256

perform R twice, each corner will get a +1 twist and a +2 twist, which sums
to three, except that three wraps around to zero.

From here, we can prove that for any cube position, if you sum the orientations
of all of the corners, you get zero. Any quarter turn about R, F', L, and B adds
atotal of 1 + 2 + 1 + 2 = 6 twists to the corners, which wraps around to zero.
Therefore, moves cannot change the total orientation sum so it always remains
zero. This shows why a single corner twist is unsolvable on the Rubik’s Cube:

The orientation sum for the corners in this position is one (one for the twisted
corner plus zero for the rest), however it’s impossible to apply just one twist
using moves, and the corner orientation sum will always be one regardless of
the moves that you do.

Similarly, we can show that the orientation sum of edges is also always zero. If
we call the non-flipped state “zero” and the flipped state “one”, then the F' and
B turns both flip four edges, adding +4 to the edge orientation sum of the cube,
which wraps around to zero. Therefore, a single edge flip is unsolvable too:

257

Is there anything else that’s unsolvable? Actually, yes! For this to make sense,
we have to think of permutations as a composition of various swaps. For
example, a four-cycle can be composed out of three swaps:

(1,2)-(1,3) - (1,4) = (1,2,3) - (1,4) = (1,2, 3,4)

In general, any permutation can be expressed as a composition of swaps. So
what does this have to do with Rubik’s Cubes? Well a funny thing with swaps
is that permutations can only either be expressed as a combination of an even
or an odd number of swaps. This is called the parity of a permutation. You can
see that a four-cycle has odd parity because creating it requires an odd number
of swaps. Any quarter turn of a Rubik’s Cube can be expressed as a four cycle
of corners and a four cycle of edges, which is 3 + 3 = 6 swaps. Overall, the
permutation is even.

Therefore, a two-swap of Rubik’s Cube pieces is unsolvable because creating it
requires a single swap, and doing turns only does even permutations, meaning
the permutation of pieces will always remain odd.

0

V&
WAV

Is there any other arrangement of pieces that is unsolvable? Actually no! You
can show this by counting the number of ways that you can take apart and
randomly put together a Rubik’s Cube, then dividing that by three because
two thirds of those positions will be unsolvable due to the corner orientation
sum being non-zero. Then divide by two for edge orientation sum, and then
divide by two again for parity. You will see that the number you get is 4.3 -
10" which is exactly the size of the Rubik’s Cube group.

258

3.14) Cycle structures

Now that we understand orientation, we can notate cube states in terms of
permutation and orientation of pieces rather than just permutation of stickers.
This will make the way in which the Qter Architecture Solver works easier to
think about. Lets see how we can represent the RU algorithm.

Next, lets trace where the pieces go. Instead of using numbers to represent the
pieces in the cycle notation, we can simply use their names.

(UFR)(FDR, UFL, UBL, UBR, DBR)(FR, UF, UL, UB, UR, BR, DR)

Note that I'm writing down the one-cycle of the UFR corner because we will
see that it twists in place. If you would like, you can manually verify the tracing
of the pieces. Next, we need to examine changes of orientation.

RU
o<
‘0"0’ L l..

N e .
= S

I’'m going to notate orientation by writing the amount of orientation that a

piece acquires above it.

41 42 40 +0 42 +1 40 40 +0 +0 +0 +0 +0
(UFR)(FDR, UFL, UBL, UBR, DBR)(FR, UF, UL, UB, UR, BR, DR)

259

The process of translating a cube state into cycles of pieces including orien-
tation is known as blind tracing because when blind solvers memorize a puzzle,
they memorize this representation. Using this representation, we can actually
calculate the order of the algorithm. In the intro, we claimed that the RU
algorithm repeats after performing it 105 times, but now we can prove it.

First, we have to consider how many iterations it takes for each cycle to return
to solved. To find this, we have to consider both the length of the cycle and
the overall orientation accrued by each piece over the length of the cycle. Lets
consider the first cycle first. It has length one, meaning the piece stays in its
solved location, however the piece returns with some orientation added, so it
takes three iterations overall for that piece to return to solved.

(R U)?
®o I“

Next, let’s consider the cycle of edges. They have a cycle of seven and don’t
accrue orientation at all, so it simply takes 7 iterations for the edges to return
to solved.

= g7 Ny,

& ‘W

W .
L 4

Finally, let’s consider the cycle of corners. It has length 5, so all pieces return
to their solved locations after 5 iterations, but you can see that they accrue
some amount of orientation.

220
Y

260

How can we calculate how much orientation? Since each piece will move
through each location in the cycle, it will move through each addition of
orientation, meaning that all pieces will accrue the same orientation, and that
orientation will be the sum of all orientation changes, looping around after
three. The cycle has three orientation changes, +2, +2, and +1, and summing
them gives +5 which loops around to 4-2. You can see in the above example
that all corners in the cycle have 42 orientation.

It will take three traversals through the cycle for the orientation of the pieces
to return to zero, so the cycle resolves itself after 15 iterations.

Now, the entire cycle resolves itself once all individual cycles resolve them-
selves. To calculate when, we can simply take the LCM:

lem(3,7,15) = 105

This also clarifies what pieces we have to select as parameters for “solved-
goto”. We need a representative piece from every cycle that isn’t redundant.
We don’t need to care about the 3 cycle because it is always solved whenever
the 15 cycle is. We can pick any representatives from the 7 and 15 cycles, for
example FDR and FR. Using those, the QAT program

261

.registers {
A <« 3x3 (R U)
}

label:
solved-goto A label

...compiles to the Q program

Puzzles
A: 3x3

1 | solved-goto FDR FR 1

3.1.5) Orientation and parity sharing
Lets examine a real Qter architecture, for example the 90/90 one:

A=RFLULULFUR B=UFR' D’R2FR'U D

e ", o7 Ba% oot <' N
ST 2SN N 7
W < W o>

Now let’s blind-trace the cube positions:

+2 41 +1 +0 40 40 +1 +0 +0 +0
A = (DBL)(UF)(UFL, UBL, UBR)(UL, LB, RB, UB, LD)

+1 41 41 41 42 41 40 40 40 +1 +0
B = (DBL)(UFR)(DFR, DFL, DBR)(RD)(UR, FL, DB, FR, FD)

From here, we can calculate the orders of each register. A has cycles of length
3,2,9,10 with LCM 90, and B has cycles 3, 3,9, 2, 10 with LCM 90. However,
we can see that both cycles twist the DBL corner! This is not good for the
cycles being independently decodable. However, what we can do is ignore
that one piece when calculating cycle lengths and performing “solved-goto”

262

instructions. Without that shared piece, we get that A has cycles 2,9, 10 still
with LCM 90 and B has cycles 3,9, 2, 10 still with LCM 90.

Why would we need to share pieces? The fundamental reason is due to
the orientation and parity constraints described previously. You’ve seen that
having a non-zero orientation sum allows the lengths of cycles to be extended
beyond what they might otherwise be, however that net orientation needs to
be cancelled out elsewhere to ensure that the orientation sum of the whole
puzzle remains zero. For example, for the register A, the +2 on DBL cancels
out the 41 on that 15 cycle.

It’s possible for us to use the same piece across different registers to cancel
out orientation, allowing more pieces to be used for storing data. We call this
orientation sharing, and the pieces that are shared are called shared pieces. We
can also use sharing to cancel out parity. For both A and B, all of the cycles
that contribute to the order have even parity, meaning that parity doesn’t need
to be cancelled out. However if they had odd parity, then we could share two
pieces that can be swapped to cancel out parity. We call that parity sharing.

Note that it would actually be possible for all of the DBL, UFR, UF, and RD
pieces to be shared and the cycles would still work; it just happens that they
aren’t. If they were shared, then there could be the possibility of a shorter
algorithm to produce a cycle, but at the cost of the ability to use those pieces
to detect whether the register is divisible by two or three.

3.1.6) What is the Qter Architecture Solver?
You now have all of the background knowledge required to understand what
the Qter Architecture Solver does. It is split into two phases:

The Cycle Combination Finder calculates what registers are possible on a
Rubik’s Cube by determining how cycles can be constructed and how pieces
would have to be shared. One of the outputs of Cycle Combination Finder for
the 90/90 architecture shown above would be something like:

Shared: Two corners, Two edges
A:
- Cycle of three corners with any non-zero net orientation

263

- Cycle of five edges with non-zero net orientation

B:
- Cycle of three corners with any non-zero net orientation
- Cycle of five edges with non-zero net orientation

Then the Cycle Combination Solver would take that as input and output the
shortest possible algorithms that produce the given cycle structures.

Oh, and all of the theory that we just covered is generalizable to arbitrary
twisty puzzles, and the Qter Architecture Solver is programmed to work for
all of them. However, we will stick to the familiar Rubik’s Cube for our expla-
nation.

3.2) Cycle Combination Finder

You saw an early example of utilizing cycles as registers within the cube: the
U algorithm can be defined addition by 1. This example is a good introduction,
but it only allows for a single cycle of four states.

Ideally we would have more states and multiple cycles. The Cycle Combination
Finder (CCF) finds all ‘non-redundant’ cycle combinations, those which cannot
be contained within any larger combinations. A 90/80 (90 cycle and 80 cycle)
is redundant, since 90/90 is also possible. It contains all of the 90/80 positions,
as well as additional positions that are not possible with 90/80, such as (81,81).

To define some terms, we will let the set of cycles that represent a register be
the cycle combination of that register. For example, the cycle combination of
RU is the set of the 3, 7, and 15 cycles that make it up. An architecture is the
set of cycle combinations of all registers, as well as the set of shared pieces
that make the registers possible to realize on the cube given the orientation
and parity constraints. For the purpose of the CCF, we don’t need to know
exactly which pieces need to make up each cycle or are shared. We only need
the number of pieces for each orbit that are shared, and the number and
orientation sum of pieces in each cycle. Figuring out which pieces are the best
to use is the job of the Cycle Combination Solver.

264

3.2.1) Beginning with primes

To begin constructing architectures for a puzzle, we must begin by finding
which individual cycles are possible to create. We begin by looking at primes.
For large primes and their powers, generally 5 or up, we will be able to create
a cycle that is the length of that prime power only if there is an orbit of pieces
greater than or equal to that prime power. The 3x3 has an orbit of 12 edges, so
the prime powers 5, 7, and 11 will fit, but 13, 25, and 1331 are too large.

For smaller primes, generally just 2 and 3, we may be able to make a more
compact cycle using orientation. Instead of cycling 3 corner pieces, we can just
twist a single corner, since corners have an orientation of period 3. A power
of a small prime p’“ will fit if there exists a number m < k and an orbit with at
least p™ pieces, and the power deficit can be made up by orienting, meaning
that p*~™ divides the orientation period of the orbit. For example, 16 will fit
since there are at least 8 edges, and we can double the length of the 8-cycle
using a 2-period orientation.

Following this logic, the prime powers that fit on a 3x3 are: 1, 2, 3,4, 5,7, 8, 9,
11, 16.

3.2.2) Generalizing to composites

We then combine the prime powers to find all integer cycle combinations that
will fit on the puzzle. Each prime power is assigned a minimum piece count,
which is the minimum number of pieces required to construct that cycle. For
large primes, such as 5, this is just the value itself. For the smaller primes it is
p™ as shown above, replaced by 0 if p” = 1. This replacement is done since a
cycle made purely of orientation could be combined with one made of purely
permutation. If there is a 5-cycle using 5 edges, we can insert a 2-cycle for
‘free’ by adding a 2-period orientation.

Given these minimum piece counts, we recursively multiply all available
powers for each prime (including p°), and exit the current branch if the piece
total exceeds the number of pieces of the puzzle.

For example, an 880 cycle will not fit on the 3x3. The prime power factorization
is 16, 5, and 11 which have minimum piece counts of 8, 5, and 11 respectively,

265

adding to 24. The 3x3 only has 20 pieces so this is impossible. However, a 90
cycle may fit. The prime powers of 90 are 2, 9, and 5, which have minimum
piece counts 0, 3, and 5. These add to 8, much lower than the 20 total pieces. It
is important to note that this test doesn’t guarantee that the cycle combination
will fit, just that it cannot yet be ruled out.

3.2.3) Combining multiple cycles

Once all possible cycle orders are found, we search for all non-redundant
architectures. We will generate the cycle combinations in descending order,
since any architecture is equivalent to a descending one. For example, 10/20/40
is the same as 40/20/10.

First, we have to generate the list of potentially possible sets of orders of
registers in an architecture, which we do by simply trying every possible set
of cycle combinations that we discovered in the previous step, and pruning
all values with minimum piece sums greater than the number of pieces on
the puzzle, and that don’t have registers in descending order. This does not
guarantee that the architecture in the list can be created, but it is true that
every architure that can be created is in the list.

To test if a set of orders fits on the puzzle, we decompose each order into its
prime powers, and try placing each power into each orbit. For the 3x3 there
are 2 orbits: corner pieces and edge pieces. For example, to test if 90/90 fits, we
decompose it into prime power cycles of 2, 9, 5, 2, 9 and 5. Note that for the
purpose of fitting all of the cycles onto the puzzle, we don’t need to remember
which cycle belongs to which register. We recursively place each cycle into
each orbit, failing if there is not enough room in any orbit for the current
power. This begins by trying to place the first 2-cycle in the corner orbit, and
passing to the 9-cycle, then once that recursion has finished, trying to place
the 2-cycle in the edge orbit and passing forward.

If all cycles get placed into an orbit, then we have found a layout that fits,
and any pieces left-over can be considered shared. However, we still need to
perform a final check to ensure that parity and orientation are accounted for
by the shared pieces. If this check passes, we log the architecture. Otherwise
it fails and we continue the search.

266

After a successful architecture has been found, it can be used to exit early for
redundant combinations: If all possible architectures from the current branch
of the search would be redundant to a successful combination, we exit and
continue at the next step of the previous level. Once all possible outputs have
been found, we can remove all redundant cycle combinations that we weren’t
able to remove during search and return from the Cycle Combination Finder.

3.3) Cycle Combination Solver

The Cycle Combination Finder of the Qter Architecture Solver finds the non-
redundant cycle structures of each register in a Qter architecture. We are not
done yet—for every cycle structure, we need to find an algorithm that, when
applied to the solved state, yields a state with that cycle structure. That is, we
need to solve for the register’s “add 1” operation. Once we have that, all other
“add N”s can be derived by repeating the “add 1” operation N times and then
shortening the algorithm using an external Rubik’s Cube solver.

The Cycle Combination Solver adds two additional requirements to this task.
First, it solves for the shortest, or the optimal algorithm that generates this
cycle structure. This is technically not necessary, but considering that “add 1”
is observationally the most executed instruction, it greatly reduces the overall
number of moves needed to execute a Q program. Second, of all solutions of
optimal length, it chooses the algorithm easiest to physically perform by hand,
which we will discuss in a later section that follows.

In order to understand how to optimally solve for a cycle structure, we briefly
turn our attention to an adjacent problem: optimally solving the Rubik’s Cube.

We thank Scherpius [5] for his overview of the ideas in these next few sections.

3.3.1) Optimal solving background

First, what do we mean by “optimal” or “shortest”? We need to choose a metric
for counting the number of moves in an algorithm, and there are a variety of
ways to do so. In this paper, we will use what is known as the half turn metric,
which means that we consider U2 to be a single move. An alternative choice
would be the quarter turn metric which would consider U2 to be two moves,
however that is less common in the literature and we won’t use it in this paper.

267

In an optimal Rubik’s Cube solver, we are given a random position, and we
must find the shortest algorithm that brings the Rubik’s Cube to the solved
state. Analogously, the Cycle Combination Solver starts from the solved state
and finds the shortest algorithm that brings the puzzle to a position with
our specified cycle structure. The only thing that’s fundamentally changed is
something trivial — the goal condition. We bring up optimal solving because
this allows us to reuse its techniques which have been studied for the past 30
years [6].

It would be reasonable to expect there to be a known structural property of the
Rubik’s Cube that makes optimal solving easy. Indeed, to find a good solution
to the Rubik’s Cube, the technique of Kociemba’s algorithm [7] cleverly utilizes
a specific subgroup to solve up to 3900 individual position per second near
optimally [8]. However, we want to do better than that.

Unfortunately, to find an optimal solution, the only known approach is to brute
force all combinations of move sequences until the Rubik’s Cube is solved. To
add some insult to injury, Demaine [9] proved that optimal N x N x N cube
solving is NP-complete. However, this doesn’t mean we can’t optimize the
brute force approach. We will discuss a variety of improvements that can be
made, some specific to the Cycle Combination Solver only, but unless there is
a significant advancement in group theory relating to the problem it is solving,
the runtime is necessarily going to be exponential.

3.3.2) Tree searching

A more formal way to think about the Cycle Combination Solver is to think
of the state space as a tree of Rubik’s Cube positions joined by the 18 moves.
The number of moves that have been applied to any given position is simply
that position’s corresponding level in the tree. We will refer to these positions
as nodes.

268

Q
\0:0’

NANA

A\ O\
=

~
-

:
&z.
o
%

|
s,
S
A
A\ 1\
-~

b
G5
NN o’

Our goal is now to find a node with the specified cycle structure at the topmost
level of the tree, a solution of the optimal move length. Those familiar with data
structures and algorithms will think of the most obvious approach to this form
of tree searching: breadth-first search (BFS). BES is an algorithm that explores
all nodes in a level before moving on to the next one. Indeed, BFS guarantees
optimality, and works in theory, but not in practice: extra memory is needed
to keep track of child nodes that are yet to be explored. At every level, the
number of nodes scales by a factor 18, and so does the extra memory needed.
At a depth level i.e. sequence length of just 8, BFS would require storing 18°
depth-9 nodes or roughly 200 billion Rubik’s Cube states in memory. This is
clearly not practical; we need to do better.

We now consider a sibling algorithm to BFS: depth-first search (DFS). DFS is
an algorithm that explores all nodes as deep as possible before backtracking.
It strikes our interest because the memory overhead is minimal; all you need

269

to keep track of is the path taken to reach a node, something that can be easily
managed during the search. However, because we explore nodes depth-first, it
offers no guarantee about optimality, so we still have a problem.

A simple modification to DFS can make it always find the optimal solution.
We tweak the DFS implementation so that it explores up until a specified
depth, testing whether each node at this depth is a solution, without exploring
further. We repeatedly run this implementation at increasing depth limits until
a solution is found. Put simply, you do a DFS of depth 1, then of depth 2, and
so on. This idea is known as iterative-deepening depth-first search (IDDFS), a
hybrid of a breadth-first and depth-first search. IDDFS does repeat some work
each iteration, but the cost is always small relative to the last depth because
the Rubik’s Cube search tree grows exponentially. The insignificance of the
repeat work is further exacerbated given that even more time is spent at the
last depth running the test for a solution. Because the majority of the time is
spent at the last depth d, the asymptotic time complexity of 0(18d) in Big O
notation is actually identical to BFS while solving the memory problem. We
will gradually improve this time complexity bound throughout the rest of this
section.

3.3.3) Pruning

IDDES solves the memory issue, but is lacking in speed because tree searching
is still slow. The overwhelming majority of paths explored lead to no solution.
What would be nice is if we could somehow know whether all paths that
continue from a given node are dead ends without having to check by brute-
force.

For this, we introduce the idea of a pruning table. For any given Rubik’s Cube
position, a pruning table tells you a lower bound on the number of moves
needed to reach a Cycle Combination Solver solution. Suppose we are running
IDDFS until depth 12, we’ve done 5 moves so far, and we have reached this
node.

270

R U2l DR

|]

If we query the pruning table and it says that this position needs at least 8
moves to reach a Cycle Combination Solver solution, we know that this branch
is a dead end. 5 moves done so far plus 8 left is 13, which is more than the
12 at which we plan to terminate. Hence, we can avoid having to search this
position any longer.

The use of pruning tables in this fashion was originated by Korf [6] in his
optimal Rubik’s Cube solver. He observed the important requirement that
pruning tables must provide admissible heuristics to guarantee optimality. That
is, they must never overestimate the distance to a solution. If in the above
example, the lower bound was wrong and there really was a solution in 12
moves, then the heuristic would prevent us from finding it. Combining IDDFS
and an admissible heuristic is known as Iterative Deepening A* (IDA").

How are we supposed to store all 43 quintillion positions of the Rubik’s
Cube in memory? Well, we don’t: different types of pruning tables solve this
problem by sacrificing either information or accuracy to take up less space.
Hence, pruning tables give an admissible heuristic instead of the exact number
of moves needed to reach a Cycle Combination Solver solution.

Loosely speaking, pruning tables can be thought of as a form of meet-in-the-
middle search, more generally known as a space—time trade-off [10]. Even
when running the Cycle Combination Solver on the same puzzle, we must
generate a new pruning table for every unique cycle structure. It turns out this
is still worth it. In general, we can characterize the effectiveness of a pruning
table by its expected admissible heuristic, p. Pruning tables reduce the search
depth of the tree because they have the effect of preventing searching the last
p depths, and the improvements are dramatic because the number of nodes at

271

increasing depths grows exponentially. But there is no free lunch: we have to
pay for this speedup by memory.

We are left with a need to examine the asymptotic time complexity of
IDA™. In general pruning table distributions are nontrivial to analyze, so our
observations below are not a formal analysis but rather a series of intuitive
arguments. An IDA* search to depth limit d is similar to an IDDFS search to
depth limit d — p, implying a time complexity of IDA" is 0(18d_p) (recall how
the last depth is the dominating factor). One might even be eagar to consider
these two searches exactly equivalent, but Korf describes a perhaps surprising
discrepancy: the number of nodes visited by IDA* is empirically far greater, up
to a magnitude of two. Nodes with large pruning values are quickly pruned,
while nodes with small pruning values survive to spawn more nodes. Thus,
IDA” search is biased in favor of smaller heuristic values, and the expected
admissible heuristic is actually lesser.

Next we conjecture that p is logarithmically correlated to the number of states
the pruning table can store, which we denote as the amount of memory used
m. If we first assume the branching factor b to be constant, implying each
depth has exactly b times more states stored in the pruning table than the
previous depth, we notice the maximum depth that is stored in the pruning
table is at least log, m. Since there are exponentially more states at the last
depth, p is negligibly less than log, m; hence, p =~ log, m. In reality, there are
two flaws with this assumption. First, the branching factor is not constant
and always less than its theoretical value, eventually converging to zero. This
implies our estimate of p ~ log, m is an egregious overestimate of the actual
average pruning value, but we consider this okay because IDA* is biased in
favor of smaller heuristic values. Second, when there are relatively many Cycle
Combination Solver solutions, the maximum depth state stored in the pruning
table decreases. We also consider this okay because many solutions implies
that one will be found at a lesser search depth. If we let A equal to both of these
reductions, we find that the IDA* search depth limit remains approximately
the same: (d — A) — (p — A\) = d — p. All of the aforementioned biases cancel
each other out to some extent, so we proceed with this approximation of p.

272

As such, O(l8d_p) = O(l8d_ log1 m) = O(%d). Empirically and analyti-
cally, doubling the size of the pruning table halves the CPU time required to
perform a search.

3.3.4) Pruning table design

The larger the admissible heuristic, the better the pruning, and the lesser the
search depth. So, we need to carefully design our pruning tables to maximize:
« how much information we can store within a given memory constraint; and
« the value of the admissible heuristic

3.3.4.a) Symmetry reduction

Symmetry reduction is the most famous way to compress pruning table
entries. We thank Kociemba [11] for his excellent explanations of symmetry
reduction on his website. Take a good look at these two cube positions below:

A=FUFU B=RURU
\\\ - .
i L
//7‘ R g‘
/ c‘
<

They are different but they are basically identical. If you replace red with
blue, blue with orange, orange with green, green with red, you will have
transformed A into B. Because these two cube positions have the exact same
structure of pieces, they need the same number of moves to reach a Cycle
Combination Solver solution.

We call such positions symmetrically equivalent. If we really wanted to be
serious about pruning table compression, what we can do is store a single
representative of all symmetrically equivalent cubes because they would all
share the same admissible heuristic value, and keeping a separate entry for
each of these positions is a waste of memory.

Defining symmetrically equivalent cubes by figuring out an arbitrary way
to recolor the cube is a very handwavy way to think about it, nor is it

273

very efficient. The more mathematically precise way to define symmetrically
equivalent cubes is with permutations. Two cube positions A and B are
symmetrically equivalent if there exists a symmetry S of the cube such that
SAS™! = B, where the S operations are spatial manipulations the whole
cube. We can prove that A and B are symmetrically equivalent using this

model:
Solved
(reference frame)

L[TeT |

WA\

W\gss
W’

S A St B
Rotate 90° Apply A Rotate —90° Resultant B

% O -\

B W PR

In group theory, SAS™1 is called a conjugation of A by S—we first perform
the symmetry, apply our desired permutation, and then perform the inverse
of the symmetry to restore the original reference frame. The symmetries of
arbitrary polyhedra themselves form a group, called a symmetry group, so we
can guarantee an S~! element exists.

Symmetry reduction compresses the pruning table by the number distinct
symmetries—all possible values of S—of the cube, so how many are there?
The symmetry group of the cube M consists of 24 rotational symmetries and
24 mirror symmetries, for a total of 48 distinct symmetries. You can think
of the mirror symmetries by imagining holding a Rubik’s Cube position in a
mirror to get a mirror image of that position. In this reflectional domain, we

274

again apply the 24 rotational symmetries. We illustrate one (of very many)
ways to uniquely construct all of these symmetries, with the mirror symmetry
highlighted in red.

SFB2 A

The 48 symmetries of the cube

M = {(Syrps)" - (Sra)" - (Sya)® - (Spg2)” | a € {0,1,2},b € {0,1},
c€{0,1,2,3},d € {0,1}}

We discussed how symmetry conjugation temporarily changes a position’s
frame of reference before subsequently restoring it. Without any further con-
text this would be fine, but in programming we efficiently represent a Rubik’s
Cube position by treating the centers as a fixed reference frame to avoid storing
their states. This optimization is critical for speed because it makes position
composition faster and minimizes data overhead. The ensuing caveat is that

275

we must always refer to a fixed frame of reference, so we have to rethink
how symmetry conjugation works. The solution is simple, and the established
theory still holds: we define the change of reference frame as a position such
that, when composed with the solved state, it transforms the pieces around
the fixed frame of reference.

Fixed frame of reference

<o
N
SFB2 SU4 SURB3 SRZ
Invalid position Invalid position Valid position Valid position

g5 g5 g #N
SN PN W W
o P N e, ¥

> B

The takeaway is in the observation that every symmetry position has the
centers in the same spatial orientation.

Notice that the Sy, and Si;, symmetries are invalid positions with this fixed
reference frame—the latter because of the parity constraint, and the former
because the mirror image produces a reflectional coloring. This does not matter
because the inconsistencies are un-done when S~ is applied; thus the conju-
gation SAS~! always results in a valid position.

276

48 symmetries is already quite a lot, but we can still do better. If we can show
that both an arbitrary Rubik’s Cube position and its inverse position require
the same number of moves to reach a Cycle Combination Solver solution, we
can once again store a single representative of the two positions and further
compress the table by another factor of 2. We call this antisymmetry.

Let us prove that our presumption is true.

1. Let P and S be defined as sequences such that P S is an optimal solution
to the Cycle Combination Solver.

2. We take the inverse of P S to get S~1P~! of the same sequence length,
which is still an optimal solution to the Cycle Combination Solver. Taking
the inverse of the “add 1” operation (which is P .S) is the “sub 1” operation;
changing your frame of reference to think of “sub 1”7 as “add 17 yields
another way to construct the exact same register.

3. We conjugate S~1P~! with S to get S(S!P71)S~! = P~1871 of the
same sequence length. It turns out that conjugate elements in a permuta-
tion group exhibit the same cycle structure, hence this is also an optimal
solution to the Cycle Combination Solver. To understand why, we simplify
the problem and examine the general case of two conjugate elements in a
permutation group A and ABA™!. If permutation B takes element x to y,
then ABA™! takes element A(z) to A(y). Indeed,

(ABA™!)(A(z)) = A(B(A™(A(2)))) = A(B()) = A(y)

So every cycle (zy,z5,..,2z,) of B is taken to the cycle
(A(xq), A(zy), ..., A(z,,)) of ABA™!. Viewing permutations as bijective
maps of its elements, conjugation only relabels the elements moved by B. It
does not change the cycle lengths nor how many cycles there are. We apply
this corollary with A = S and B = S~1 P~

4. We have shown that if P S is an optimal solution to the Cycle Combination
Solver then so is P71S71. S and S~ are the same sequence length; thus,
the positions reached by any arbitrary P and by P~! starting from the

277

solved state require the same number of moves to reach an optimal Cycle
Combination Solver solution. This completes our proof.

Symmetry and antisymmetry reduction comes with a cost. During IDA*
search, every position must be transformed to its “symmetry and antisym-
metry” representative before using it to query the pruning table. To do so
we conjugate the position by the 48 symmetries and the inverse by the 48
antisymmetries to explore all the possible representatives. To identify the
representative position after each conjugation, we look at its raw binary
state representation and choose the lexicographic minimum (i.e. the minimum
comparing byte-by-byte). Multiple symmetries may produce the representa-
tive position, however that is okay because at no point do we actually care
about which symmetry conjugation did so; the result is still the same.

The symmetry and antisymmetry reduction algorithm as described so far
would be slow—we need to perform 96 symmetry conjugations, and each is
about as expensive as two moves. We use the following trick described by
Rokicki [12]: instead of computing the full conjugation for every symmetry
conjugation, we compute the elements one-at-a-time. We take the least possi-
ble value for the first element of all the symmetry conjugations and filter for
the ones that give us that value. Then, we compute all the second symmetry
conjugation elements, find the least possible value for that, and so on. This
optimization usually only ends up performing a single full symmetry conju-
gation.

3.3.4.b) Pruning table types

The Cycle Combination Solver uses a separate pruning table per the puzzle
orbits. For the Rubik’s Cube, that means one pruning table for the corners and
one for the edges. To get an admissible heuristic for an individual position, we
query each pruning table based on the states of the position’s corresponding
orbits and take the maximum value. A brief example: if querying a Rubik’s
Cube state returns 3 on the corners pruning table and 5 on the edges pruning
table, then its admissible heuristic is the maximum of the two, 5. We estab-
lished that larger heuristic values are better, and the optimality guarantee still
stands because each individual pruning table is already admissible.

278

Generating a pruning table for an orbit is done in two phases. First, we
enumerate every single position of the orbit and mark solutions of the Cycle
Combination Solver. Then, we search the Rubik’s Cube tree but from these
solution states instead of from the solved state, and storing the amount of
moves required to reach each state found as the admissible heuristic.

The Cycle Combination Solver supports four different types of pruning tables:
the exact pruning table, the approximate pruning table, the cycle structure
pruning table, and the fixed pruning table. They are dynamically chosen at
runtime based on a maximum memory limit option.

We defer our discussion of pruning table types for a later revision.

Finally, the Cycle Combination Solver generates the pruning tables and per-
forms IDA* search at the same time. It would not be very efficient for the
Cycle Combination Solver to spend all of its time generating the pruning
tables only for the actual searching part to be easy, so it balances out querying
and generation; starting from an uninitialized pruning table, if the number of
queries exceeds the number of set values by a factor of 3, it pauses the search
to generate a deeper layer of that pruning table and then continues.

3.3.4.c) Pruning table compression

The Cycle Combination Solver supports three different data compression
types: no compression, nxopt compression, and tabled asymmetric numeral
systems (tANS) compression. They are dynamically chosen at runtime based
on a maximum memory limit option.

We defer our discussion of pruning table compression for a later

revision.

3.3.5) IDA” optimizations
We employ a number of tricks to improve the running time of the Cycle
Combination Solver’s IDA* tree search.

3.3.5.2) SIMD
We enhance the speed of puzzle operations through the use of puzzle-specific
SIMD on AVX2 and Neon instruction set architectures. Namely, the VPSHUFB

279

instruction on AVX2 and the tbl.8/tbl.16 instructions on Neon perform
permutation composition in one clock cycle, enabling for specialized SIMD
algorithms to compose two Rubik’s Cube states [13] and test for a Cycle Com-
bination Solver solution [14]. They have both been disassembled and highly
optimized at the instruction level. Additionally, the puzzle-specific SIMD
uses compacted representations optimized for the permutation composition
instructions. For example, it uses a representation of a Rubik’s Cube state that
can fit in a single YMM CPU register on AVX2 and in the D and Q CPU registers
on Neon.

Pruning table generation also uses puzzle-specific SIMD. To generate a
pruning table on the corners orbit, we need to use a different Rubik’s Cube
representation because we don’t want to waste CPU caring about what
happens to edges. So, every orbit has its own specialized SIMD representation
and SIMD algorithm modifications.

We leave the precise details at the prescribed references; we defer our
discussion of how the SIMD algorithms work for a later revision.

3.3.5.b) Canonical sequences

At every increasing depth level of the IDA* search tree we explore 18 times as
many nodes. We formally call this number the branching factor—the average
number of child nodes visited by a parent node. A few clever observations can
reduce the branching factor.

We observe that we never want to rotate the same face twice. For example,
if we perform R followed by R’, we've just reversed the move done at the
previous level of the tree. Similarly if we perform R followed by another R, we
could have simply done R2 straight away. In general, any move should not be
followed by another move in the same move class, the set of all move powers.
This reduces the branching factor of the child nodes from 18 for all 18 moves
to 15. Additionally, we don’t want to search both RL and LR because they
commute, and result in the same net action. So, we assume that R (or R2, R’)
never follows L (or L2, L"), and in general, we only permit searching distinct
commutative move classes strictly in a single order only. Move sequences
that satisfy these two conditions are called canonical sequences. Canonical

280

sequences are special because these two conditions make it easy to check if a
move sequence in the search tree is redundant.

What does the second condition reduce our branching factor from 15 to? We
start by counting the number of canonical sequences at length NV, denoted a,,,
using a recurrence relation. We consider the last move of the sequence M,
the second to last move M,, and the third to last move M. The recurrence
relation can be constructed by analyzing two cases:

+ Case 1: M, and M, do not commute.

In this case, a,, is simply a,,_; multiplied by the number of possibilities
of M. Since M; and M, do not commute, M; cannot be M, (—1) nor
its opposite face (—1). Therefore, M; must be one of 6 —1 — 1 = 4 move
classes, or one of the 4 * 3 = 12 possible moves. We can establish that the
first component in the recurrence relation for a,, is 12a,,_;.

+ Case 2: M, and M, commute.

We need to be careful to only count M; and M,, one time so we count
them in pairs. In this case, a,, is simply a,,_, multiplied by the number of
strictly ordered (M, M,) pairs. There are 3 pairs of commutative move
classes: F'B,UD, and RL.We have to discard one of these pairs because M,
necessarily commutes with the move classes in one of these pairs since the
union of all of these pairs is every move. Such a canonical sequence where
the subsequence M3 M, M, all commute cannot exist because one of those
moves will always violate the strict move class ordering. For example, if M,
is L and M, is R, then there is no possible option for M that makes the full
sequence a canonical sequence.

Each move class in each pair can perform three moves, which implies that
each pair contributes 3 * 3 = 9 possible moves. Overall we find this number
to be (3 —1) x9 = 18 possible moves. We can establish that the second
component in the recurrence relation for a,, is 18a,, 5.

a,, can be thought of as the superposition of these two cases with the base cases
a,; = 18 and a, = 243 (exercise to the reader: figure out where these come

281

from). Hence, a,, = 12a,,_; + 18a,,_, for n > 2. The standard recurrence re-
lation can be solved as follows:

rm = 12r""! 4 18rn 2
"2 (—r? +12r +18) =0
—12 4 /122 — 4(—1)(18)

2(-1)
A B
a, = Ar{™* + Bry™? = i + 5}
T T2
—A +B =243

a/3 = Arl + BT’2 =].2(12 +].8041 = 3240
Solve for A and B

a, =~ 1.362(13.348)" + 0.138(—1.348)"

The 1.362(13.348)" term dominates 0.138(—1.348)™ as n approaches infinity;
our new branching factor is approximately 13.348!

It turns out that a,, is not an exact bound on the number of distinct positions
at sequence length N but merely an upper bound. This is because the formula
overcounts, and the actual number is always lower: it considers canonical
sequences that produce equivalent states such as R2 L2 U2 D2 and U2 D2 R2
L2 as two distinct positions. It turns out it is extremely nontrivial to describe
and account for these equivalences, to the point where it’s not worth doing
so: at shallow and medium depths, a,, roughly stays within 10% of the actual
distinct position count. The Cycle Combination Solver considers the extra
work negligible and searches equivalent canonical sequernces anyways. The
Big O time complex1ty of IDA* can be realized as O(13.348°) an improvement
over O(—) from Section 3.3.2.

The Cycle Combination Solver uses an optimized finite state machine to
perform the canonical sequence optimization.

282

3.3.5.c) Sequence symmetry

We use a special form of symmetry reduction during the search we call
sequence symmetry, first observed by Rokicki [15] and improved by our imple-
mentation. Some solution to the Cycle Combination Solver ABC' D conjugated
by A™! yields A7'(ABCD)A = BCDA, which we observe to be a rotation
of the original sequence as well as a solution to the Cycle Combination Solver
by the properties of conjugation discussed earlier. Repeatedly applying this
conjugation:

1(ABCD)A = BCDA
(BCDA)B = CDAB
(CDAB)C = DABC

A-
= B!
=C!
= DY (DABC)D = ABCD

forms an equivalence class based on all the rotations of sequences that are
all solutions to the Cycle Combination Solver. The key is to search a single

representative sequence in this equivalence class to avoid duplicate work.

Similarly to symmetry conjugation, we choose the representative as the lexi-
cographically minimal sequence on a move-by-move basis (with a move class
ordering relation defined). Unlike symmetry conjugation, we don’t manually
apply all sequence rotations to find the representative; rather, we embed
sequence symmetry as a modification to the recursive IDA* algorithm such
that it only ever searches the representative sequence. We do this by observing
that if a representative sequence starts with move A, then every other move
cannot be lexicographically lesser than it. If this observation were to be false,
we could keep on rotating the sequence until the offending move is at the
beginning of the sequence, and since that move is lexicographically lesser
than A that sequence rotation would be the true representative. This contra-
dicts the initial representative sequence assumption. We permit moves that are
lexicographically equal to A (i.e. in the same move class) but change the next
recursive step to repeat the logic on the move after A. The overall effect is that
the IDA* algorithm only visits move sequences such that no later subsequence

283

is lexicographically lesser than the beginning of the move sequence. This
suffices for the complete sequence symmetry optimization.

The modification described is not yet foolproof. The sequence ABABCAB
would technically be valid as there is no later subsequence lesser than the
beginning, but the actual lexicographically minimal representative is the
ABABABC sequence rotation. The “later subsequence” of the true represen-
tative wraps around from the end to the beginning. So, extra care must be
taken at the last depth to manually account for the wrapping behavior. We only
apply this to the last depth, so sequences like ABABCABC are still searched
by the next depth limit of IDA™.

We can extend our prior definition of canonical sequences to include sequence
symmetry as a third condition. How does sequence symmetry affect the num-
ber of canonical sequences at depth N? Because a sequence of length N has N
sequence rotations, sequence symmetry logically divides the total number of
nodes visited by IV, but only in the best case. The canonical sequence RU R U
R U only has 2 members in its sequence rotational equivalence class, not 6, so
the average value to divide by is actually a bit less than N. It follows that the
average number of canonical sequences at depth IV (and the IDA* asymptotic
time complexity) is bound by €2 (%) and O (&n?sd)_ Testing has shown
this number to typically be right in the middle of these two bounds.

Furthermore, we take advantage of the fact that the optimal solution sequence
almost never starts and ends with commutative moves. We claim that the IDA*
algorithm almost never needs to test AB ... C such that A and C' commute for
a solution. The proof is as follows.

We first observe that if AB ... C' is a solution, then CAB ... is also a solution
by a sequence rotation. This tells us that A and C cannot be in the same move
class or else they could be combined to produce the shorter solution DB
Such a shorter solution would have been found at the previous depth limit,
implying that AB ... C never would have been explored, making this situation
an impossibility. This also tells us that A also cannot be in a greater move class
than C because CAB ... would be a lexicographically lesser than AB ... C,

contradicting our earlier proof that IDA* only searches the lexicographically

284

minimal sequence rotation (the representative). Therefore, A must be in a
lesser move class than C'.

If CAB ... is a solution, then ACB ... is also a solution because A and C
commute. By the transitive property, if AB ... C is a solution, then so is
ACBBoth of these sequences are independently searched and tested as a
solution because there is no direct “commutative move ordering” or sequence
symmetry relation between them. This is redundant work; we choose to
discard the AB ... C case. This completes our proof.

This optimization only applies to the last depth in IDA", so it only prevents
running the test to check if a node is a solution and does not affect the time
complexity. It turns out to be surprisingly effective at reducing the average
time per node because most of the time is spent at the last depth.

We alluded to an edge case when we said “almost never” If B doesn’t exist,
or if every move from B ... commutes with A and C, then this optimization
will skip canonical sequences where every move commutes with each other;
for example F' B on the Rubik’s Cube. The number of skipped sequences is so
small that we have the bandwidth to manually search and test these sequences
for solutions before running IDA*.

3.3.5.d) Pathmax

We use a simple optimization described by Mérd [16] called pathmax to prune
nodes with large child pruning heuristics. When a child node has a large
pruning heuristic, we can set the current node cost to that value minus one and
re-prune to avoid expanding the remaining child nodes. This larger heuristic
is still admissible because it is one less than a known lower bound, and the
current node is one move away from all of its child nodes. This is only effective
when the heuristics are inconsistent, or, in this case, when the pruning table
entries are the minimum of two or more other values. With exact pruning
tables only, this optimization will never run because the entries are perfect
heuristics that cannot exhibit this type of discrepency.

285

+ 5 %8 + 5 > 8 (Prune)

Pathmax

IDA* pathmax at depth = 5, depth limit = 8

3.3.5.¢) Parallel IDA*

Our last trick is to enhance IDA* through the use of parallel multithreaded IDA*
(PMIDA* [17]). PMIDA” runs in two phases. In the first phase, we use BFS to
explore the state space to a shallow depth, maintaining a queue of all of states
at the last search depth. In the second phase, we use a thread pool to run IDA*
in parallel for every state in that queue, utilizing of all of the CPU cores on the
host machine. To uphold the optimality guarantee, PMIDA* synchronizes the
threads using a barrier that triggers when they have all completed exploring
the current level. It can be thought of as a simple extension to the familiar IDA*
algorithm.

There have been many parallel IDA* algorithms discussed in literature; how
do we know PMIDA" is the best one? We take advantage of the special fact
that the Cycle Combination Solver starts searching from the solved state. In
order to understand this, we compare the total Rubik’s Cube position counts
with the Rubik’s Cube position counts that are unique by symmetry.

286

Rubik’s Cube position counts [18]

Rubik’s Cube position counts unique

by symmetry + antisymmetry [18]

Branching Branching

Depth Count factor Depth | Count factor

0 1 NA 0 1 NA

1 18 18 1 2 2

2 243 13.5 2 8 4

3 3240 13.333 3 48 6

4 43239 13.345 4 509 10.604

5 574908 13.296 5 6198 12.177

6 7618438 13.252 6 80178 12.936

7 100803036 13.231 7 1053077 13.134

8 1332343288 13.217 8 13890036 13.190

9 17596479795 13.207 9 183339529 13.199

Recall that our theoretical branching factor is 13.348. In the table of Rubik’s
Cube position counts, the branching factor roughly matches this number.
However, at the shallow depths of the table of Rubik’s Cube position counts
unique by symmetry 4+ antisymmetry, our branching factor is much less
because there are duplicate positions when performing moves from the solved
state. Intuitively, this should make sense: the Rubik’s Cube is not scrambled
enough to start producing unique positions. It is easy to pick out two sequences
of length two that are not unique by symmetry; for example R2 U and R2 F.
The branching factor converges to its theoretical value as the Rubik’s Cube
becomes more scrambled because symmetric positions become more rare. In
fact, it was shown by Qu [19] that scrambling the Rubik’s Cube can literally
be modelled as a Markov chain (it’s almost indistinguishable from a random
walk of a graph). Hence, it is unlikely for two random move sequences of the
same length to produce positions equivalent by symmetry. We know that such
collisions do happen because the branching factor doesn’t actually reach the
13.348 value, but we consider them negligible.

287

The effectiveness of the PMIDA* algorithm stems from combining all of these
observations. When our initial shallow BFS search is done, we filter out the
many symmetrically equivalent positions from the queue to avoid redundant
work before we start parallelizing IDA*. The savings are incredibly dramatic:
at depth 4, for example, we symmetry reduce the number of nodes from 43239
to 509. This is a reduction by ~ 84.9, a factor that is close to the familiar
96 (the number of symmetries + antisymmetries). Once we do that, and the
cube starts to become sufficiently scrambled, we are confident to claim that
each IDA” thread worker explores their own independent regions of the search
space and duplicates a negligible amount of work.

We make note that there are almost always going to be more positions in the
queue to parallelize than available OS threads. We use an optimized thread
pool work stealing algorithm for our multithreaded implementation.

We squeeze out our last bit of juice by overlapping pruning table memory
latency with the computation. It has been empirically observed that random
access into the pruning table memory is the dominating factor for Rubik’s
Cube solvers. Modern processors include prefetching instructions that tell the
memory system to speculatively load a particular memory location into cache
without stalling the execution pipeline to do so. Our PMIDA* implementation
uses a technique described by Rokicki [20] called microthreading to spend
CPU time on different subsearches while waiting for the memory to come
to a query. It splits up each thread into eight “slivers” of control. Each sliver
calculates a pruning table query memory address, does a prefetch, and moves
on to the next sliver. When that sliver gets control again, only then does it
reference the actual memory. By handling many subsearches simultaneously,
microthreading minimizes the CPU idle time.

How does PMIDA” affect the asymptotic time complexity? We established in
Section 3.3.5.c an upper bound of O(%). The time required by PMIDA*
can be computed by adding the time of the first and second phases. In the
first phase the time required for the BFS is O(13.348%) where d, is the
aforementioned shallow depth. In the second phase we symmetry reduce at the
shallow depth, split the work across ¢ independent threads, and ignore nodes

288

before depth d,. The time required is O((M 13.348d1)/t) where s is
the number of symmetries + antisymmetries. The PMIDA” time complexity
is thus 0(13 3484 + (13 3487 _ 13 348%) /t) but we consider d, to be very
small and s to be a neghglble constant. As such the final time complexity

becomes O(%) We can apply the exact same logic to our lower bound,
and we get Q(w).

3.3.6) Larger twisty puzzles

The overwhelming majority of our research has been within the realm of the
Rubik’s Cube, and so far, we have yet to run the Cycle Combination Solver
on non-Rubik’s Cube twisty puzzles. While we are confident all of our theory
generalizes to larger twisty puzzles (with minor implementation detail differ-
ences [12]), there is a practical concern we expect to run into.

Optimally solving the 4x4x4 Rubik’s Cube has been theorized to take roughly
as much time as computing the minimum number of moves to solve any 3x3x3
Rubik’s Cube [21], which took around 35 CPU-years [8]. It may very well
be the case that the Cycle Combination Solver, even with all its optimization
tricks, will never be able to find a solution to a Cycle Combination Finder cycle
structure for larger twisty puzzles. Thus, we are forced to sacrifice optimality
in one of three ways:

+ We can write multiphase solvers for these larger puzzles. Multiphase solvers
are specialized to the specific puzzle, and they work by incrementally bring-
ing the twisty puzzle to a “closer to solved” state in a reasonable number of
moves. However, designing a multiphase solver is profoundly more involved
compared to designing an optimal solver. This approach is unsustainable
because it is impractical and difficult to write a multiphase solver for every
possible twisty puzzle.

+ We can resort to methods to solve arbitrary permutation groups. We specu-
late that the most promising method of which may be to utilize something
called a strong generating set [22]. The GAP computer algebra system
implements this method in the PreImagesRepresentative function as illus-
trated in . The algorithms produced by the strong generating sets can quickly

289

become large. In the future, we plan to investigate the work of Egner [23]
and apply his techniques to keep the algorithm lengths in check.

+ When all other options have been exhausted, we must resort to designing
our cycle structure algorithms by hand. This approach would likely follow
the blindfolded twisty puzzle solving method of permuting a three or five
pieces at a time. Contrary to popular belief, the blindfolded solving method
is simple, and it is generalizable to arbitrary twisty puzzles.

3.3.7) Movecount Coefficient Calculator

The Cycle Combination Solver’s solutions are only optimal by length, but not
by easiness to perform. Meaning, if you pick up a Rubik’s cube right now, you
would find it much harder to perform B2 L’ D2 compared to R U R’ despite
being the same length because this algorithm requires you to awkwardly re-
grip your fingers to make the turns. This might seem like an unimportant
metric, but remember: we want Qter to be human-friendly, and the “add 1”
instruction is observationally the most executed one.

Thus, the Cycle Combination Solver first finds all optimal solutions of the same
length, and then utilizes our rewrite of Trang’s Movecount Coefficient Calcu-
lator [24] to output the solution easiest to physically perform. The Movecount
Coefficient Calculator simulates a human hand turning the Rubik’s Cube to
score algorithms by this metric. For non-Rubik’s cube Cycle Combination
Solver puzzles, we favor algorithms that turn faces on the right, top, and front
of the puzzle, near where your fingers would typically be located.

3.3.8) Re-running with fixed pieces

The Cycle Combination Solver as described so far only finds the optimal
solution for single register for a Qter architecture given by the Cycle Combi-
nation Finder. Now we need to re-run the Cycle Combination Solver for the
remaining registers to find their optimal solutions.

Re-running the Cycle Combination Solver brings about one additional require-
ment: the pieces affected by previously found register algorithms must be fixed
in place. We do this to ensure incrementing register A doesn’t affect the state
of register B; logically this kind of side-effect is nonsensical and important

290

to prevent. The moves performed while incrementing register A can actually
move these fixed pieces around whereever they want—what only matters is
that these pieces are returned to their original positions. In other words, all of
the register incrementation algorithms in a Qter architecture must commute.

Fixing pieces also means we can no longer use symmetry reduction because
two symmetrically equivalent puzzles may fix different sets of pieces.

How can we be so sure that the second register found is the optimal solution
possible? Yes, while the Cycle Combination Solver finds the optimal solution
given the fixed pieces constraint, what if a slightly longer first register algo-
rithm results in a significantly shorter second register algorithm? In this sense
it is extremely difficult to find the provably optimal Qter architecture because
of all of these possiblities. The Cycle Combination Solver does not concern
itself with this problem, and it instead uses a greedy algorithm. It sorts the
Cycle Combination Finder registers by their sizes (i.e. the number of states) in
descending order. We observe that the average length of the optimal solution
increases as more pieces on the puzzle are fixed because there are more
restrictions. Solving each cycle structure in this order ensures that registers
with larger sizes are prioritized with shorter algorithms because they are more
likely to be incremented in a () program than smaller sized registers.

4) Conclusion

In this article, we gave a comprehensive description of Qter from the perspec-
tive of a user, as well as from the perspective of the underlying mathematics
and algorithms. If you read the whole thing, you now have the necessary
background knowledge to even contribute to Qter. You’ve probably figured
out that Qter is useful as nothing more than a piece of art or as an educational
tool, but it’s fulfilled that role better than we could have ever imagined.

Our journey with Qter is not even close to over, but given our track record
at recruiting people to help us, yours probably is. We hope that we were
able to give you the “WOW!” factor that we felt (and are still feeling) while
putting this thing together. We’re just a bunch of randos, and we built Qter out
of knowledge scoured from Wikipedia, scraps of advice from strangers, and

291

flashes of creativity and inspiration. We hope that we have inspired you to find
your own Qter to obsess over for years.

5) Appendix A: GAP programming
We provide an example run of GAP solving the random scramble F' L’ D’ B2
U' ' B"UB2R2F R2U2F' R2 FU2 B’ R2 F’ R B2 in just over two

seconds using the strong generating set method.

gap> U := (1, 3, 8, 6)(2,5, 7, 4)(9,33,25,17)(10,34,26,18)
(11,35,27,19);;

gap> L := (9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)
(6,22,46,35);;

gap> F := (17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)
(8,30,41,11);;

gap> R := (25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)
(8,33,48,24);;

gap> B := (33,35,40,38)(34,37,39,36)(3, 9,46,32)(2,12,47,29)
(1,14,48,27);;

gap> D := (41,43,48,46)(42,45,47,44)(14,22,30,38) (15,23,31,39)
(16,24,32,40);;

gap> random_scramble :=
F*L"-1*D"™-1*B"2*U"-1*B™- 1¥U*B"2*R™2*F" - 1¥*R™2*U"2*F~ - 1*R™2*F
*Un2*B™-1*¥R™2*F~-1*%R*B"2;

gap> cube := Group(U, L, F, R, B, D);;

gap> generator_names := ["U", "L", "F", "R", "B", "D"];;

gap> hom :=
EpimorphismFromFreeGroup(cube:names:=generator_names);;

gap> ext _rep := ExtRepOfObj(PreImagesRepresentative(hom,
random_scramble));;

gap> time;

2180

gap> for i in Reversed([1l..Length(ext rep) / 2]) do
> Print(generator names[ext rep[i * 2 - 111);

> count := ext_rep[i * 2];

> if count in [-2, 2] then

> Print("2");

> elif count in [-3, 1] then

> Print("'");

292

> else

> Print(" ");

> fi;

> Print(" ");

> od;

U B2R2F B'"R"B R F R F"R"U'"D R D'"F'"U L F2U L'

uzfF D F'D'"L U L2U'B L B"U'"L"U'"L"B"U"B U"L U

L*v L U F U F L UF U F L"U F U L"U L F L U2

L'v'L U L"U2F U R U R"F U F R U R"F"'L"B"U2B

u L

6) References

[1] Lucas Garron, “Rubik's Cube Solution — Reference Sheet” [Online].
Available: https://cube.garron.us/solution.pdf

[2] D. Wang, “Rubik's Cube Move Notation.” [Online]. Available: https://
jperm.net/3x3/moves

[3] M. Hedberg, On Rubik's Cube. KTH Royal Institute of Technology, 2010,
pp- 65-79.

[4] “Analyzing Rubik's Cube with GAP. [Online]. Available: https://www.
math.rwth-aachen.de/homes/GAP/WWW2/Doc/Examples/rubik.html

[5] J. Scherphuis, “Computer Puzzling” [Online]. Available: https://www.
jaapsch.net/puzzles/compcube.htm

[6] R. Korf, “Finding optimal solutions to Rubik's cube using pattern data-
bases.” 1997, AAAI Press.

[7]1 H. Kociemba, “Two-Phase Algorithm Details.” [Online]. Available:
https://kociemba.org/math/imptwophase.htm

[8] T. Rokicki, H. Kociemba, M. Davidson, and J. Dethridge, “The diameter
of the rubik's cube group is twenty,” 2014, siam REVIEW.

[9] E. Demaine, S. Eisenstat, and M. Rudoy, “Solving the Rubik's Cube

Optimally is NP-complete,” 2018, Schloss Dagstuhl — Leibniz-Zentrum fiir
Informatik. doi: 10.4230/LIPICS.STACS.2018.24.

293

https://cube.garron.us/solution.pdf
https://jperm.net/3x3/moves
https://jperm.net/3x3/moves
https://www.math.rwth-aachen.de/homes/GAP/WWW2/Doc/Examples/rubik.html
https://www.math.rwth-aachen.de/homes/GAP/WWW2/Doc/Examples/rubik.html
https://www.jaapsch.net/puzzles/compcube.htm
https://www.jaapsch.net/puzzles/compcube.htm
https://kociemba.org/math/imptwophase.htm
https://doi.org/10.4230/LIPICS.STACS.2018.24

[10]

[11]

[12]

294

“Space—time tradeoff” [Online]. Available: https://en.wikipedia.org/
wiki/Space%E2%80%93time_tradeoff

H. Kociemba, “Equivalent Cubes and Symmetry.” [Online]. Available:
https://kociemba.org/cube. htm

T. Rokicki, “architecture.md” [Online]. Available: https://github.
com/cubing/twsearch/blob/0dced6e55{5612609a54c75056d00535fadeeOc
8/docs/architecture.md

A. Chaudhary, [Online]. Available: https://github.com/
ArhanChaudhary/qter/blob/8d2cbcb5338250cd25¢132678b838d0316£502
f9/src/phase2/src/puzzle/cube3/avx2.rs#L207

A. Chaudhary, [Online]. Available: https://github.com/
ArhanChaudhary/qter/blob/8d2cbcb5338250cd25¢132678b838d0316502
f9/src/phase2/src/puzzle/cube3/avx2.rs#1.304

T. Rokicki, Support reduction by rotation of sequences in ordertree. [On-
line]. Awvailable: https://github.com/cubing/twsearch/commit/7b1d62bd
9d9d232fb4729¢7227d5255deed9673¢

L. Mérd, “A Heuristic Search Algorithm with Modifiable Estimate,” 1984.

B. Mahafzah, “Parallel multithreaded IDA* heuristic search: algorithm
design and performance evaluation,” 2011, Taylor & Francis.

T. Scheunemann, “God's Algorithm out to 15f*” [Online]. Available:
http://forum.cubeman.org/?q=node/view/201

Y. Qu, T. Rokicki, and H. Yang, “Rubik's Cube Scrambling Requires at
Least 26 Random Moves,” 2024. [Online]. Available: https://arxiv.org/
abs/2410.20630

T. Rokicki, [Online]. Available: https://github.com/cubing/twsearch/
blob/0dced6e55f5612609a54c75056d00535fadee0c8/src/cpp/solve.cpp#L
111

T. Rokicki, “God's number is..” [Online]. Available: https://www.
speedsolving.com/threads/gods-number-is.30231/post-997686

https://en.wikipedia.org/wiki/Space%E2%80%93time_tradeoff
https://en.wikipedia.org/wiki/Space%E2%80%93time_tradeoff
https://kociemba.org/cube.htm
https://github.com/cubing/twsearch/blob/0dced6e55f5612609a54c75056d00535fadee0c8/docs/architecture.md
https://github.com/cubing/twsearch/blob/0dced6e55f5612609a54c75056d00535fadee0c8/docs/architecture.md
https://github.com/cubing/twsearch/blob/0dced6e55f5612609a54c75056d00535fadee0c8/docs/architecture.md
https://github.com/ArhanChaudhary/qter/blob/8d2cbcb5338250cd25c132678b838d0316f502f9/src/phase2/src/puzzle/cube3/avx2.rs#L207
https://github.com/ArhanChaudhary/qter/blob/8d2cbcb5338250cd25c132678b838d0316f502f9/src/phase2/src/puzzle/cube3/avx2.rs#L207
https://github.com/ArhanChaudhary/qter/blob/8d2cbcb5338250cd25c132678b838d0316f502f9/src/phase2/src/puzzle/cube3/avx2.rs#L207
https://github.com/ArhanChaudhary/qter/blob/8d2cbcb5338250cd25c132678b838d0316f502f9/src/phase2/src/puzzle/cube3/avx2.rs#L304
https://github.com/ArhanChaudhary/qter/blob/8d2cbcb5338250cd25c132678b838d0316f502f9/src/phase2/src/puzzle/cube3/avx2.rs#L304
https://github.com/ArhanChaudhary/qter/blob/8d2cbcb5338250cd25c132678b838d0316f502f9/src/phase2/src/puzzle/cube3/avx2.rs#L304
https://github.com/cubing/twsearch/commit/7b1d62bd9d9d232fb4729c7227d5255deed9673c
https://github.com/cubing/twsearch/commit/7b1d62bd9d9d232fb4729c7227d5255deed9673c
http://forum.cubeman.org/?q=node/view/201
https://arxiv.org/abs/2410.20630
https://arxiv.org/abs/2410.20630
https://github.com/cubing/twsearch/blob/0dced6e55f5612609a54c75056d00535fadee0c8/src/cpp/solve.cpp#L111
https://github.com/cubing/twsearch/blob/0dced6e55f5612609a54c75056d00535fadee0c8/src/cpp/solve.cpp#L111
https://github.com/cubing/twsearch/blob/0dced6e55f5612609a54c75056d00535fadee0c8/src/cpp/solve.cpp#L111
https://www.speedsolving.com/threads/gods-number-is.30231/post-997686
https://www.speedsolving.com/threads/gods-number-is.30231/post-997686

[22]

(23]

[24]

“Strong generating set.” [Online]. Available: https://en.wikipedia.org/
wiki/Strong_generating_set

S. Egner and M. Piischel, “Solving puzzles related to permutation groups,”
Association for Computing Machinery. [Online]. Available: https://doi.
org/10.1145/281508.281611

V. Trang, “Movecount Coefficient Calculator: Online Tool To
Evaluate The Speed Of 3x3 Algorithms” [Online]. Avail-
able: https://www.speedsolving.com/threads/movecount-coefficient-
calculator-online-tool-to-evaluate-the-speed-of-3x3-algorithms.79025/

295

https://en.wikipedia.org/wiki/Strong_generating_set
https://en.wikipedia.org/wiki/Strong_generating_set
https://doi.org/10.1145/281508.281611
https://doi.org/10.1145/281508.281611
https://www.speedsolving.com/threads/movecount-coefficient-calculator-online-tool-to-evaluate-the-speed-of-3x3-algorithms.79025/
https://www.speedsolving.com/threads/movecount-coefficient-calculator-online-tool-to-evaluate-the-speed-of-3x3-algorithms.79025/

